Suppr超能文献

基于多重分形分析和多层感知器分类的光学相干断层扫描图像早期糖尿病视网膜病变检测

Early Diabetic Retinopathy Detection from OCT Images Using Multifractal Analysis and Multi-Layer Perceptron Classification.

作者信息

Aziz Ahlem, Tezel Necmi Serkan, Kaçmaz Seydi, Attallah Youcef

机构信息

Electrical and Electronics Engineering Department, Karabuk University, 78050 Karabuk, Türkiye.

Department of Electrical and Electronical Engineering, Gaziantep University, 27310 Gaziantep, Türkiye.

出版信息

Diagnostics (Basel). 2025 Jun 25;15(13):1616. doi: 10.3390/diagnostics15131616.

Abstract

Diabetic retinopathy (DR) remains one of the primary causes of preventable vision impairment worldwide, particularly among individuals with long-standing diabetes. The progressive damage of retinal microvasculature can lead to irreversible blindness if not detected and managed at an early stage. Therefore, the development of reliable, non-invasive, and automated screening tools has become increasingly vital in modern ophthalmology. With the evolution of medical imaging technologies, Optical Coherence Tomography (OCT) has emerged as a valuable modality for capturing high-resolution cross-sectional images of retinal structures. In parallel, machine learning has shown considerable promise in supporting early disease recognition by uncovering complex and often imperceptible patterns in image data. This study introduces a novel framework for the early detection of DR through multifractal analysis of OCT images. Multifractal features, extracted using a box-counting approach, provide quantitative descriptors that reflect the structural irregularities of retinal tissue associated with pathological changes. A comparative evaluation of several machine learning algorithms was conducted to assess classification performance. Among them, the Multi-Layer Perceptron (MLP) achieved the highest predictive accuracy, with a score of 98.02%, along with precision, recall, and F1-score values of 98.24%, 97.80%, and 98.01%, respectively. These results highlight the strength of combining OCT imaging with multifractal geometry and deep learning methods to build robust and scalable systems for DR screening. The proposed approach could contribute significantly to improving early diagnosis, clinical decision-making, and patient outcomes in diabetic eye care.

摘要

糖尿病性视网膜病变(DR)仍然是全球可预防视力损害的主要原因之一,在长期患糖尿病的人群中尤为如此。视网膜微血管的渐进性损伤如果在早期未被发现和处理,可能会导致不可逆转的失明。因此,开发可靠、无创且自动化的筛查工具在现代眼科中变得越来越重要。随着医学成像技术的发展,光学相干断层扫描(OCT)已成为一种用于获取视网膜结构高分辨率横截面图像的重要手段。与此同时,机器学习通过揭示图像数据中复杂且往往难以察觉的模式,在支持疾病早期识别方面显示出了巨大的潜力。本研究通过对OCT图像进行多重分形分析,引入了一种用于早期检测DR的新框架。使用盒计数法提取的多重分形特征提供了反映与病理变化相关的视网膜组织结构不规则性的定量描述符。对几种机器学习算法进行了比较评估,以评估分类性能。其中,多层感知器(MLP)实现了最高的预测准确率,得分为98.02%,精确率、召回率和F1分数分别为98.24%、97.80%和98.01%。这些结果凸显了将OCT成像与多重分形几何和深度学习方法相结合,以构建用于DR筛查的强大且可扩展系统的优势。所提出的方法可为改善糖尿病眼病护理中的早期诊断、临床决策和患者预后做出重大贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bc4/12248572/fac00a628d19/diagnostics-15-01616-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验