Suppr超能文献

基于深度学习的四种计算机辅助检测(CAD)系统在不同辐射剂量和重建方法下对肺结节检测、体积测量及Lung-RADS分类的性能评估与人工阅片比较

Performance Evaluation of Four Deep Learning-Based CAD Systems and Manual Reading for Pulmonary Nodules Detection, Volume Measurement, and Lung-RADS Classification Under Varying Radiation Doses and Reconstruction Methods.

作者信息

Chen Sifan, Gao Lingqi, Tan Maolu, Zhang Ke, Lv Fajin

机构信息

Department of Radiology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.

出版信息

Diagnostics (Basel). 2025 Jun 26;15(13):1623. doi: 10.3390/diagnostics15131623.

Abstract

Optimization of pulmonary nodule detection across varied imaging protocols remains challenging. We evaluated four DL-CAD systems and manual reading with volume rendering (VR) for performance under varying radiation doses and reconstruction methods. VR refers to a post-processing technique that generates 3D images by assigning opacity and color to CT voxels based on Hounsfield units. : An anthropomorphic phantom with 169 artificial nodules was scanned at three dose levels using two kernels and three reconstruction algorithms (1080 image sets). Performance metrics included sensitivity, specificity, volume error (AVE), and Lung-RADS classification accuracy. : DL-CAD systems demonstrated high sensitivity across dose levels and reconstruction settings, with three fully automatic DL-CAD systems (0.92-0.95) outperforming manual CT readings (0.72), particularly for sub-centimeter nodules. However, DL-CAD systems exhibited limitations in volume measurement and Lung-RADS classification accuracy, especially for part-solid nodules. VR-enhanced manual reading outperformed original CT interpretation in nodule detection, particularly benefiting less-experienced radiologists under suboptimal imaging conditions. : These findings underscore the potential of DL-CAD for lung cancer screening and the clinical value of VR in low-dose settings, but they highlight the need for improved classification algorithms.

摘要

在不同的成像协议下优化肺结节检测仍然具有挑战性。我们评估了四种深度学习计算机辅助检测(DL-CAD)系统以及使用容积再现(VR)的人工读片,以研究在不同辐射剂量和重建方法下的性能。VR是一种后处理技术,它根据亨氏单位为CT体素分配不透明度和颜色来生成三维图像。使用两个内核和三种重建算法,在三个剂量水平下对一个带有169个模拟结节的仿真人体模型进行扫描(共1080个图像集)。性能指标包括灵敏度、特异性、体积误差(AVE)和Lung-RADS分类准确性。DL-CAD系统在不同剂量水平和重建设置下均显示出较高的灵敏度,三个全自动DL-CAD系统的灵敏度(0.92 - 0.95)优于人工CT读片(0.72),对于亚厘米级结节尤其如此。然而,DL-CAD系统在体积测量和Lung-RADS分类准确性方面存在局限性,特别是对于部分实性结节。在结节检测方面,VR增强的人工读片优于原始CT判读,尤其有利于在成像条件欠佳时经验较少的放射科医生。这些发现强调了DL-CAD在肺癌筛查中的潜力以及VR在低剂量设置中的临床价值,但也突出了改进分类算法的必要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验