Suppr超能文献

人-人工智能交互对胸部 X 光片中恶性肺结节检测的影响。

Effect of Human-AI Interaction on Detection of Malignant Lung Nodules on Chest Radiographs.

机构信息

From the Department of Radiology (J.H.L., E.J.H., C.M.P.) and Medical Research Collaborating Center (H.H.), Seoul National University Hospital, Seoul, Korea; Lunit, Seoul, Korea (G.N.); Institute of Medical and Biological Engineering and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea (C.M.P.); and Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea (C.M.P.).

出版信息

Radiology. 2023 Jun;307(5):e222976. doi: 10.1148/radiol.222976.

Abstract

Background The factors affecting radiologists' diagnostic determinations in artificial intelligence (AI)-assisted image reading remain underexplored. Purpose To assess how AI diagnostic performance and reader characteristics influence detection of malignant lung nodules during AI-assisted reading of chest radiographs. Materials and Methods This retrospective study consisted of two reading sessions from April 2021 to June 2021. Based on the first session without AI assistance, 30 readers were assigned into two groups with equivalent areas under the free-response receiver operating characteristic curve (AUFROCs). In the second session, each group reinterpreted radiographs assisted by either a high or low accuracy AI model (blinded to the fact that two different AI models were used). Reader performance for detecting lung cancer and reader susceptibility (changing the original reading following the AI suggestion) were compared. A generalized linear mixed model was used to identify the factors influencing AI-assisted detection performance, including readers' attitudes and experiences of AI and Grit score. Results Of the 120 chest radiographs assessed, 60 were obtained in patients with lung cancer (mean age, 67 years ± 12 [SD]; 32 male; 63 cancers) and 60 in controls (mean age, 67 years ± 12; 36 male). Readers included 20 thoracic radiologists (5-18 years of experience) and 10 radiology residents (2-3 years of experience). Use of the high accuracy AI model improved readers' detection performance to a greater extent than use of the low accuracy AI model (area under the receiver operating characteristic curve, 0.77 to 0.82 vs 0.75 to 0.75; AUFROC, 0.71 to 0.79 vs 0.7 to 0.72). Readers who used the high accuracy AI showed a higher susceptibility (67%, 224 of 334 cases) to changing their diagnosis based on the AI suggestions than those using the low accuracy AI (59%, 229 of 386 cases). Accurate readings at the first session, correct AI suggestions, high accuracy Al, and diagnostic difficulty were associated with accurate AI-assisted readings, but readers' characteristics were not. Conclusion An AI model with high diagnostic accuracy led to improved performance of radiologists in detecting lung cancer on chest radiographs and increased radiologists' susceptibility to AI suggestions. © RSNA, 2023

摘要

背景

影响放射科医生在人工智能(AI)辅助图像阅读中诊断决策的因素仍未得到充分探索。

目的

评估 AI 诊断性能和读者特征如何影响胸部 X 线片 AI 辅助阅读中恶性肺结节的检测。

材料与方法

本回顾性研究包括 2021 年 4 月至 6 月进行的两次阅读会议。根据第一次无 AI 辅助的会议,将 30 名读者分为两组,两组的自由响应接收器操作特征曲线下面积(AUFROC)相等。在第二次会议中,每组使用高或低准确性的 AI 模型(对使用两种不同的 AI 模型这一事实不知情)重新解读 X 光片。比较了读者检测肺癌的性能和读者易感性(根据 AI 建议改变原始阅读)。使用广义线性混合模型来确定影响 AI 辅助检测性能的因素,包括读者对 AI 的态度和经验以及坚毅评分。

结果

共评估了 120 张胸部 X 光片,其中 60 张来自肺癌患者(平均年龄 67 岁±12[标准差];32 名男性;63 例癌症),60 张来自对照组(平均年龄 67 岁±12;36 名男性)。读者包括 20 名胸部放射科医生(5-18 年经验)和 10 名放射科住院医师(2-3 年经验)。与使用低准确性 AI 模型相比,使用高准确性 AI 模型可更大程度地提高读者的检测性能(接收器操作特征曲线下面积,0.77 至 0.82 比 0.75 至 0.75;AUFROC,0.71 至 0.79 比 0.7 至 0.72)。使用高准确性 AI 的读者改变诊断的易感性(67%,334 例中的 224 例)高于使用低准确性 AI 的读者(59%,386 例中的 229 例)。第一次阅读时的准确性、正确的 AI 建议、高准确性 AI 和诊断难度与准确的 AI 辅助阅读相关,但读者特征则不然。

结论

具有高诊断准确性的 AI 模型可提高放射科医生在胸部 X 光片上检测肺癌的性能,并增加放射科医生对 AI 建议的易感性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验