Ruenroengrit Kemchat, Kunyuan Jumpon, Ruttanadech Nuttapong, Kaewtrakulchai Napat, Puengjinda Pramote, Chaiammart Nattapat, Chutipaijit Sutee, Buasri Achanai, Fuji Masayoshi, Eiad-Ua Apiluck, Panomsuwan Gasidit
Nanoscience and Nanotechnology, College of Materials Innovation and Technology, King Mongkut's Institute of Technology Ladkrabang, Ladkrabang, Bangkok 10520, Thailand.
King Mongkut's Institute of Technology Ladkrabang Prince of Chumphon Campus, Chumphon 86160, Thailand.
Polymers (Basel). 2025 Jun 25;17(13):1752. doi: 10.3390/polym17131752.
The increasing demand for sustainable and cost-effective energy storage solutions has driven interest in biomass-derived carbon materials for supercapacitor electrodes. This study explores the valorization of coconut residue (CR), an abundant agricultural waste, as a carbon precursor for nanoporous carbon (NPC) production. NPC was synthesized via hydrothermal carbonization (HTC) of CR, followed by chemical activation using potassium hydroxide (KOH) at varying temperatures (700, 800, and 900 °C). The effects of activation temperature on the structure and electrochemical performance of the NPC were systematically investigated. The activated materials exhibited amorphous, highly porous structures, with surface areas increasing alongside activation temperature-reaching a maximum of 1969 m g at 900 °C. Electrochemical characterization was conducted using a three-electrode setup through cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) in a 1 M NaSO electrolyte. The sample activated at 900 °C with a CR:KOH weight ratio of 1:2.5 achieved the highest specific capacitance of 52 F g at a specific current of 1 A g. These findings underscore the potential of CR as a low-cost and sustainable raw material for fabricating efficient electrode materials in energy storage applications.
对可持续且具有成本效益的储能解决方案的需求不断增加,激发了人们对用于超级电容器电极的生物质衍生碳材料的兴趣。本研究探索了丰富的农业废弃物椰子残渣(CR)作为生产纳米多孔碳(NPC)的碳前驱体的价值。通过CR的水热碳化(HTC)合成NPC,随后在不同温度(700、800和900°C)下使用氢氧化钾(KOH)进行化学活化。系统研究了活化温度对NPC结构和电化学性能的影响。活化材料呈现出无定形的高度多孔结构,表面积随着活化温度的升高而增加,在900°C时达到最大值1969 m²/g。使用三电极装置通过循环伏安法(CV)和恒电流充放电(GCD)在1 M Na₂SO₄电解质中进行电化学表征。在CR:KOH重量比为1:2.5的条件下于900°C活化的样品在1 A/g的比电流下实现了52 F/g的最高比电容。这些发现强调了CR作为用于储能应用中制造高效电极材料的低成本且可持续原材料的潜力。