Arriaza-Echanes Carolina, Krüger Gabriel I, Comesaña-Gándara Bibiana, Terraza Claudio A, Sanhueza Loreto, Ortiz Pablo A
Centro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba 8580745, Chile.
Departamento de Ingeniería Química, Universidad Católica del Norte, Antofagasta 1240000, Chile.
Polymers (Basel). 2025 Jun 27;17(13):1782. doi: 10.3390/polym17131782.
Overheating in miniaturized electronic devices can reduce their useful life, where conventional heat sinks are insufficient. The utilization of ionenes as solid-solid phase change materials is proposed to enhance thermal dissipation without the risk of leakage. In this work, a series of imidazolium ionenes with structural modifications in their aromatic core and aliphatic chain length were synthesized. The synthesis was carried out using the respective monomers diimidazole and alkyl dibromide, followed by counterion bromide exchange using lithium bis(trifluoromethanesulfonyl)imide, with yields over 90% in all cases. Thermal characterizations showed that all ionenes are heat-resistant, with degradation temperatures between 421 °C and 432 °C; moreover, they all presented only a solid-solid transition (Tg) as a phase change, between 59 °C and 28 °C, which varied depending on the aromatic core used and the length of the aliphatic chain. The obtained ionenes were introduced into an experimental device with an operating temperature of 40 °C, to be evaluated as solid-solid phase change materials in heat sinks. These demonstrated an average decrease in operating temperature of 9 °C compared to the device without ionenes. On the other hand, the stability of the ionenes was analyzed over 10 thermal cycles at 40 °C at a heating rate of 5 °C/min. This analysis demonstrated that the ionenes did not present changes or degradation during the evaluated cycles. These findings demonstrate that imidazolium ionenes are promising solid-solid phase change materials for use as efficient and self-repairing heat sinks in compact electronic devices.
小型电子设备过热会缩短其使用寿命,而传统散热器对此无能为力。有人提出利用紫罗碱作为固-固相变材料来增强散热,且不存在泄漏风险。在这项工作中,合成了一系列在芳香核和脂肪链长度上有结构修饰的咪唑鎓紫罗碱。合成过程使用各自的单体二咪唑和烷基二溴化物,随后用双(三氟甲磺酰)亚胺锂进行抗衡离子溴交换,所有情况下产率均超过90%。热表征表明,所有紫罗碱都耐热,降解温度在421℃至432℃之间;此外,它们都仅呈现出一种固-固转变(玻璃化转变温度Tg)作为相变,转变温度在59℃至28℃之间,这取决于所使用的芳香核和脂肪链的长度。将所制得的紫罗碱引入到工作温度为40℃的实验装置中,作为散热器中的固-固相变材料进行评估。与未添加紫罗碱的装置相比,这些装置的工作温度平均降低了9℃。另一方面,在40℃下以5℃/分钟的升温速率对紫罗碱进行了10次热循环的稳定性分析。该分析表明,在评估的循环过程中,紫罗碱没有出现变化或降解。这些发现表明,咪唑鎓紫罗碱有望成为用于紧凑型电子设备中高效且自修复散热器的固-固相变材料。