Adnin Raihana Jannat, Lee Han-Seung
Department of Smart City Engineering, Hanyang University, 1271 Sa 3-dong, Sangnok-gu, Ansan-si 15588, Republic of Korea.
Department of Architectural Engineering, Hanyang University, 1271 Sa 3-dong, Sangnok-gu, Ansan-si 15588, Republic of Korea.
Molecules. 2025 Apr 10;30(8):1698. doi: 10.3390/molecules30081698.
This study successfully synthesizes SiO-encapsulated nano-phase change materials (NPCMs) via a sol-gel method, using paraffin as the thermal storage medium. The encapsulation process is validated through FTIR, XRD, and XPS analyses, confirming the formation of an amorphous SiO shell without any chemical interaction between the core and shell. SEM imaging reveals a well-defined core-shell structure with uniform spherical geometry, with the smallest particle size (190 nm) observed in the sample with a 4:1 paraffin/SiO ratio (PARSI-4). TGA results demonstrate enhanced thermal stability, with thicker SiO shells effectively protecting against thermal degradation. The DSC analysis indicates that an increased core-shell ratio improves thermal performance, with PARSI-4 exhibiting the highest melting (160.86 J/g) and solidifying (153.93 J/g) enthalpies. The encapsulation ratio (ER) and encapsulation efficiency (EE) have been accomplished at 87.83% and 87.04%, respectively, in the PARSI-4 sample. Thermal cycling tests confirm the material's long-term stability, with 98.16% enthalpy retention even after 100 cycles. Additionally, leakage resistance tests validate the structural integrity of the encapsulated paraffin, preventing spillage at elevated temperatures. These findings demonstrate the potential of SiO-encapsulated NPCMs for efficient thermal energy storage (TES), making them promising candidates for sustainable and energy-efficient applications.
本研究通过溶胶 - 凝胶法成功合成了二氧化硅包覆的纳米相变材料(NPCMs),使用石蜡作为储热介质。通过傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)和X射线光电子能谱(XPS)分析验证了包覆过程,证实形成了无定形二氧化硅壳,且核与壳之间没有任何化学相互作用。扫描电子显微镜(SEM)成像显示出具有明确核壳结构的均匀球形几何形状,在石蜡/二氧化硅比例为4:1的样品(PARSI - 4)中观察到最小粒径(190 nm)。热重分析(TGA)结果表明热稳定性增强,较厚的二氧化硅壳有效地防止了热降解。差示扫描量热法(DSC)分析表明,增加核壳比可提高热性能,PARSI - 4表现出最高的熔化焓(160.86 J/g)和凝固焓(153.93 J/g)。PARSI - 4样品的包覆率(ER)和包覆效率(EE)分别达到了87.83%和87.04%。热循环测试证实了该材料的长期稳定性,即使在100次循环后仍有98.16%的焓保留率。此外,抗泄漏测试验证了包覆石蜡的结构完整性,防止在高温下溢出。这些发现证明了二氧化硅包覆的NPCMs在高效热能存储(TES)方面的潜力,使其成为可持续和节能应用的有前途的候选材料。