Suppr超能文献

用于高性能锂离子固态电池的固-固制造工艺

Solid-to-Solid Manufacturing Processes for High-Performance Li-Ion Solid-State Batteries.

作者信息

Orisekeh David, Roh Byeong-Min, Xiao Xinyi

机构信息

Department of Mechanical Engineering, University of North Texas, Denton, TX 76205, USA.

School of Industrial and System Engineering, University of Oklahoma, Norman, OK 73019, USA.

出版信息

Polymers (Basel). 2025 Jun 27;17(13):1788. doi: 10.3390/polym17131788.

Abstract

Batteries are used as energy storage devices in various equipment. Today, research is focused on solid-state batteries (SSBs), replacing the liquid electrolyte with a solid separator. The solid separators provide electrolyte stability, no leakage, and provide mechanical strength to the battery. Separators are mostly manufactured by either traditional processes or 3D printing technologies. These processes involve making a slurry of plastic, active and conductive material and usually adding a plasticizer when making thin films or filaments for 3D printing. This study investigates the additive manufacturing of solid-state electrolytes (SSEs) by employing fused deposition modeling (FDM) with recyclable, bio-derived polylactic acid (PLA) filaments. Precise control of macro-porosity is achieved by systematically varying key process parameters, including raster orientation, infill percentage, and interlayer adhesion conditions, thereby enabling the formation of tunable, interconnected pore networks within the polymer matrix. Following 3D printing, these engineered porous frameworks are infiltrated with lithium hexafluorophosphate (LiPF), which functions as the active ionic conductor. A tailored thermal sintering protocol is then applied to promote solid-phase fusion of the embedded salt throughout the macro-porous PLA scaffold, resulting in a mechanically robust and ionically conductive composite separator. The electrochemical ionic conductivity and structural integrity of the sintered SSEs are characterized through electrochemical impedance spectroscopy (EIS) and standardized mechanical testing to assess their suitability for integration into advanced solid-state battery architectures. The solid-state separator achieved an average ionic conductivity of 2.529 × 10 S·cm. The integrated FDM-sintering process enhances ion exchange at the electrode-electrolyte interface, minimizes material waste, and supports cost-efficient, fully recyclable component fabrication.

摘要

电池在各种设备中用作能量存储装置。如今,研究集中在固态电池(SSB)上,用固体隔膜取代液体电解质。固体隔膜可提供电解质稳定性,无泄漏,并为电池提供机械强度。隔膜大多通过传统工艺或3D打印技术制造。这些工艺包括制备塑料、活性和导电材料的浆料,并且在制造用于3D打印的薄膜或细丝时通常添加增塑剂。本研究通过采用熔融沉积建模(FDM)和可回收的生物基聚乳酸(PLA)细丝来研究固态电解质(SSE)的增材制造。通过系统地改变关键工艺参数,包括光栅方向、填充百分比和层间粘附条件,实现了对宏观孔隙率的精确控制,从而能够在聚合物基质内形成可调谐的、相互连接的孔隙网络。3D打印后,这些经过工程设计的多孔框架用六氟磷酸锂(LiPF)渗透,LiPF作为活性离子导体。然后应用定制的热烧结方案,以促进嵌入盐在整个宏观多孔PLA支架中的固相融合,从而得到机械坚固且离子导电的复合隔膜。通过电化学阻抗谱(EIS)和标准化机械测试对烧结后的SSE的电化学离子电导率和结构完整性进行表征,以评估它们集成到先进固态电池结构中的适用性。该固态隔膜的平均离子电导率达到2.529×10 S·cm。集成的FDM烧结工艺增强了电极-电解质界面处的离子交换,将材料浪费降至最低,并支持具有成本效益的、完全可回收的组件制造。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9af3/12251748/9d1c1b988cd0/polymers-17-01788-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验