Suppr超能文献

基于转移学习的双马来酰亚胺基聚酰亚胺玻璃化转变温度增强预测

Transfer Learning-Enhanced Prediction of Glass Transition Temperature in Bismaleimide-Based Polyimides.

作者信息

Wang Ziqi, Liu Yu, Xu Xintong, Zhang Jiale, Li Zhen, Zheng Lei, Kang Peng

机构信息

School of Materials Science and Engineering, Beihang University, Beijing 100191, China.

State Key Laboratory of Artificial Intelligence for Material Science, Beihang University, Beijing 100191, China.

出版信息

Polymers (Basel). 2025 Jun 30;17(13):1833. doi: 10.3390/polym17131833.

Abstract

The glass transition temperature (T) was a pivotal parameter governing the thermal and mechanical properties of bismaleimide-based polyimide (BMI) resins. However, limited experimental data for BMI systems posed significant challenges for predictive modeling. To address this gap, this study introduced a hybrid modeling framework leveraging transfer learning. Specifically, a multilayer perceptron (MLP) deep neural network was pre-trained on a large-scale polymer database and subsequently fine-tuned on a small-sample BMI dataset. Complementing this approach, six interpretable machine learning algorithms-random forest, ridge regression, k-nearest neighbors, Bayesian regression, support vector regression, and extreme gradient boosting-were employed to construct transparent predictive models. SHapley Additive exPlanations (SHAP) analysis was further utilized to quantify the relative contributions of molecular descriptors to T. Results demonstrated that the transfer learning strategy achieved superior predictive accuracy in data-scarce scenarios compared to direct training on the BMI dataset. SHAP analysis identified charge distribution inhomogeneity, molecular topology, and molecular surface area properties as the major influences on T. This integrated framework not only improved the prediction performance but also provided feasible insights into molecular structure design, laying a solid foundation for the rational engineering of high-performance BMI resins.

摘要

玻璃化转变温度(T)是决定双马来酰亚胺基聚酰亚胺(BMI)树脂热性能和机械性能的关键参数。然而,BMI体系有限的实验数据给预测建模带来了重大挑战。为了弥补这一差距,本研究引入了一种利用迁移学习的混合建模框架。具体而言,多层感知器(MLP)深度神经网络在大规模聚合物数据库上进行预训练,随后在小样本BMI数据集上进行微调。作为这种方法的补充,采用了六种可解释的机器学习算法——随机森林、岭回归、k近邻、贝叶斯回归、支持向量回归和极端梯度提升——来构建透明的预测模型。进一步利用SHapley加性解释(SHAP)分析来量化分子描述符对T的相对贡献。结果表明,与在BMI数据集上直接训练相比,迁移学习策略在数据稀缺的情况下实现了更高的预测精度。SHAP分析确定电荷分布不均匀性、分子拓扑结构和分子表面积特性是对T的主要影响因素。这种集成框架不仅提高了预测性能,还为分子结构设计提供了可行的见解,为高性能BMI树脂的合理工程设计奠定了坚实基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验