Beneditt-Jimenez Leonardo A, Cruz-Cruz Isidro, Ulloa-Castillo Nicolás A, Sustaita-Narváez Alan O
School of Engineering and Sciences, Tecnologico de Monterrey, Ave. Eugenio Garza Sada Sur 2501, Monterrey 64840, NL, Mexico.
Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Ave. Eugenio Garza Sada Sur 2501, Monterrey 64840, NL, Mexico.
Polymers (Basel). 2025 Jun 30;17(13):1835. doi: 10.3390/polym17131835.
Polymer brushes (PBs) are transformative surface-modifying nanostructures, yet their synthesis via controlled methods like copper-mediated surface-initiated atom-transfer radical polymerization (Cu-SI-ATRP) faces reproducibility challenges due to a lack of understanding of parameter interdependencies. This study systematically evaluates the Cu-SI-ATRP process for polyacrylamide brushes (PAM-PBs), aiming to clarify key parameters that influence the synthesis process. This evaluation followed a step-by-step characterization that tracked molecular changes through infrared spectroscopy (IR) and surface development by contact angle (CA) through two different mixing methods: ultrasonic mixing and process simplification (Method A) and following literature-based parameters (Method B). Both methods, consisting of surface activation, 3-aminopropyltriethoxysilane (APTES) deposition, bromoisobutyryl bromide (BiBB) anchoring, and polymerization, were analyzed by varying parameters like concentration, temperature, and time. Results showed ultrasonication during surface activation enhanced siloxane (1139→1115 cm) and amine (1531 cm) group availability while reducing APTES concentration to 1 Vol% without drying sufficed for BiBB anchoring. BiBB exhibited insensitivity to concentration but benefited from premixing, evidenced by sharp C-Br (~1170 cm) and methyl (3000-2800 cm) bands. Additionally, it was observed that PAM-PBs improved with Method A, which had reduced variance in polymer fingerprint regions compared to Method B. Adding to the above, CA measurements gave complementary step-by-step information along the modifications of the surface, revealing distinct wettability behaviors between bulk PAM and synthesized PAM-PBs (from 51° to 37°). As such, this work identifies key parameter influence (e.g., mixing, BiBB concentration), simplifies steps (drying omission, lower APTES concentration), and demonstrates a step-by-step, systematic parameter decoupling that reduces variability. In essence, this detailed parameter analysis addresses the PAM-PBs synthesis process with better reproducibility than the previously reported synthesis method and achieves the identification of characteristic behaviors across the step-by-step process without the imperative need for higher-cost characterizations.
聚合物刷(PBs)是具有变革性的表面改性纳米结构,然而,通过诸如铜介导的表面引发原子转移自由基聚合(Cu-SI-ATRP)等可控方法合成聚合物刷时,由于对参数之间的相互依赖性缺乏了解,面临着可重复性挑战。本研究系统地评估了聚丙烯酰胺刷(PAM-PBs)的Cu-SI-ATRP过程,旨在阐明影响合成过程的关键参数。该评估采用了逐步表征方法,通过红外光谱(IR)跟踪分子变化,并通过两种不同的混合方法,即超声混合和工艺简化(方法A)以及遵循基于文献的参数(方法B),通过接触角(CA)跟踪表面发展情况。两种方法均包括表面活化、3-氨丙基三乙氧基硅烷(APTES)沉积、溴异丁酰溴(BiBB)锚定和聚合反应,并通过改变浓度、温度和时间等参数进行分析。结果表明,表面活化过程中的超声处理提高了硅氧烷(1139→1115 cm)和胺(1531 cm)基团的可用性,同时将APTES浓度降低到1体积%且无需干燥就足以进行BiBB锚定。BiBB对浓度不敏感,但预混合有益,这由尖锐的C-Br(~1170 cm)和甲基(3000 - 2800 cm)谱带证明。此外,观察到采用方法A制备的PAM-PBs有所改进,与方法B相比,其聚合物指纹区域的方差更小。除此之外,CA测量沿着表面改性提供了互补的逐步信息,揭示了本体PAM和合成的PAM-PBs之间不同的润湿性行为(从51°到37°)。因此,本研究确定了关键参数的影响(如混合、BiBB浓度),简化了步骤(省略干燥、降低APTES浓度),并展示了一种逐步的、系统的参数解耦方法,该方法降低了变异性。本质上,这种详细的参数分析解决了PAM-PBs的合成过程,其可重复性优于先前报道的合成方法,并且无需进行成本更高的表征就能识别整个逐步过程中的特征行为。