Loise Valeria, Simari Cataldo
Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy.
Polymers (Basel). 2025 Jul 3;17(13):1866. doi: 10.3390/polym17131866.
Nafion, while a benchmark proton exchange membrane (PEM) for fuel cells, suffers from significant performance degradation at elevated temperatures and low humidity due to dehydration and diminished mechanical stability. To address these limitations, this study investigated the development and characterization of Nafion nanocomposite membranes incorporating sulfonated silica layered materials (sSLMs). The inherent lamellar structure, high surface area, and abundant sulfonic acid functionalities of sSLMs were leveraged to synergistically enhance membrane properties. Our results demonstrate that sSLM incorporation significantly improved ion exchange capacity, water uptake, and dimensional stability, leading to superior water retention and self-diffusion at higher temperatures. Critically, the nanocomposite membranes exhibited remarkably enhanced proton conductivity, particularly under demanding conditions of 120 C and low relative humidity (i.e., 20% RH), where filler-free Nafion largely ceases to conduct. Single H/O fuel cell tests confirmed these enhancements, with the optimal sSLM-Nafion nanocomposite membrane (N-sSLM) achieving a two-fold power density improvement over pristine Nafion at 120 C and 20% RH (340 mW cm vs. 117 mW cm for Nafion). These findings underscore the immense potential of sSLM as a functional filler for fabricating robust and high-performance PEMs, paving the way for the next generation of fuel cells capable of operating efficiently under more challenging environmental conditions.
尽管Nafion是燃料电池的一种基准质子交换膜(PEM),但由于脱水和机械稳定性下降,在高温和低湿度条件下会出现显著的性能退化。为了解决这些限制,本研究调查了包含磺化二氧化硅层状材料(sSLM)的Nafion纳米复合膜的开发与特性。利用sSLM固有的层状结构、高表面积和丰富的磺酸官能团来协同增强膜的性能。我们的结果表明,加入sSLM显著提高了离子交换容量、吸水率和尺寸稳定性,从而在较高温度下具有卓越的保水性和自扩散性。至关重要的是,纳米复合膜表现出显著增强的质子传导率,特别是在120℃和低相对湿度(即20%RH)的苛刻条件下,此时无填料的Nafion基本不再传导。单H/O燃料电池测试证实了这些增强效果,最佳的sSLM-Nafion纳米复合膜(N-sSLM)在120℃和20%RH条件下比原始Nafion的功率密度提高了两倍(Nafion为117 mW/cm²,N-sSLM为340 mW/cm²)。这些发现突出了sSLM作为制造坚固且高性能PEM的功能填料的巨大潜力,为下一代能够在更具挑战性的环境条件下高效运行的燃料电池铺平了道路。