Sheng Han, Shahzad Babar, Long Fengling, Haider Fasih Ullah, Li Xu, Xian Lihua, Huang Cheng, Ma Yuhua, Li Hui
College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
Plants (Basel). 2025 Jun 27;14(13):1973. doi: 10.3390/plants14131973.
Monoculture plantation systems face increasing challenges in sustaining ecosystem multifunctionality (EMF) under intensive management and climate change, with long-term functional trajectories remaining poorly understood. Although biodiversity-EMF relationships are well-documented in natural forests, the drivers of multifunctionality in managed plantations, particularly age-dependent dynamics, require further investigation. This study examines how stand development influences EMF in L. plantations, a dominant subtropical timber species in China, by assessing six ecosystem functions (carbon stocks, wood production, nutrient cycling, decomposition, symbiosis, and water regulation) of six forest ages (6, 10, 15, 25, 30, and 34 years). The results demonstrate substantial age-dependent functional enhancement, with carbon stocks and wood production increasing by 467% and 2016% in mature stand (34 year) relative to younger stand (6 year). Nutrient cycling and water regulation showed intermediate gains (6% and 23%). Structural equation modeling identified plant diversity and microbial community composition as direct primary drivers. Tree biomass profiles emerged as the strongest biological predictors of EMF ( < 0.01), exceeding abiotic factors. These findings highlight that plantations can achieve high multifunctionality through stand maturation facilitated by synergistic interactions between plants and microbes. Conservation of understory vegetation and soil biodiversity represents a critical strategy for sustaining EMF, providing a science-based framework for climate-resilient plantation management in subtropical regions.
在集约化管理和气候变化的背景下,单一栽培人工林系统在维持生态系统多功能性(EMF)方面面临着越来越多的挑战,其长期功能轨迹仍知之甚少。尽管天然林中生物多样性与生态系统多功能性之间的关系已有充分记录,但人工林中多功能性的驱动因素,尤其是与年龄相关的动态变化,仍需进一步研究。本研究通过评估六个林龄(6年、10年、15年、25年、30年和34年)的六种生态系统功能(碳储量、木材生产、养分循环、分解、共生和水分调节),探讨林分发育如何影响中国亚热带主要木材树种杉木人工林的生态系统多功能性。结果表明,生态系统功能有显著的年龄依赖性增强,成熟林分(34年)的碳储量和木材产量相对于幼龄林分(6年)分别增加了467%和2016%。养分循环和水分调节有中等程度的增加(分别为6%和23%)。结构方程模型确定植物多样性和微生物群落组成是直接的主要驱动因素。树木生物量分布成为生态系统多功能性最强的生物学预测指标(<0.01),超过了非生物因素。这些发现突出表明,人工林可以通过植物与微生物之间的协同相互作用促进林分成熟来实现高度的多功能性。保护林下植被和土壤生物多样性是维持生态系统多功能性的关键策略,为亚热带地区具有气候适应能力的人工林管理提供了一个基于科学的框架。