Suppr超能文献

基于Transformer架构的卷积神经网络故障识别模型

Fault Identification Model Using Convolutional Neural Networks with Transformer Architecture.

作者信息

Fan Yongxin, Dang Yiming, Guo Yangming

机构信息

School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China.

School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China.

出版信息

Sensors (Basel). 2025 Jun 23;25(13):3897. doi: 10.3390/s25133897.

Abstract

With the advancement of industrial manufacturing and the shift toward high automation, machines have increasingly taken over many production tasks, greatly improving efficiency and reducing human labor. However, this also introduces new challenges, particularly the inability of machines to autonomously detect and diagnose faults. Such undetected issues may cause unexpected breakdowns, interrupting critical operations, leading to economic losses and potential safety hazards. To address this, the present study proposes a novel hybrid deep learning framework that integrates Convolutional Neural Networks (CNN) for feature extraction with Transformer architecture for temporal modeling. The model is validated using NASA's CMAPSS dataset, a widely used benchmark that includes multi-sensor data and Remaining Useful Life (RUL) labels from aeroengines. By learning from time-series sensor data, the framework achieves accurate RUL predictions and early fault detection. Experimental results show that the model attains over 97% accuracy under both single and multiple operating conditions, highlighting its robustness and adaptability. These findings suggest the framework's potential in developing intelligent maintenance systems and contribute to the field of Prognostics and Health Management (PHM), enabling more reliable, efficient, and self-monitoring industrial systems.

摘要

随着工业制造的进步以及向高度自动化的转变,机器越来越多地承担了许多生产任务,极大地提高了效率并减少了人力。然而,这也带来了新的挑战,特别是机器无法自主检测和诊断故障。此类未被检测到的问题可能会导致意外故障,中断关键操作,造成经济损失并带来潜在的安全隐患。为了解决这一问题,本研究提出了一种新颖的混合深度学习框架,该框架将用于特征提取的卷积神经网络(CNN)与用于时间建模的Transformer架构相结合。该模型使用美国国家航空航天局(NASA)的CMAPSS数据集进行了验证,这是一个广泛使用的基准数据集,包含来自航空发动机的多传感器数据和剩余使用寿命(RUL)标签。通过从时间序列传感器数据中学习,该框架实现了准确的RUL预测和早期故障检测。实验结果表明,该模型在单工况和多工况下的准确率均超过97%,突出了其鲁棒性和适应性。这些发现表明该框架在开发智能维护系统方面的潜力,并为预测与健康管理(PHM)领域做出了贡献,使工业系统更加可靠、高效且能自我监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82fb/12252208/a4f4b9593410/sensors-25-03897-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验