Zhang Zhiming, Kong Haole, Li Yi
College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.
Sensors (Basel). 2025 Jun 24;25(13):3922. doi: 10.3390/s25133922.
This paper proposes a high-sensitivity-integrated temperature sensor with low complexity based on a silicon waveguide. The waveguide layout is optimized through the finite-difference time-domain (FDTD) simulations, and a compressed taper structure improves the efficiency of speckle data collection while reducing the system complexity and cost. To achieve precise temperature demodulation, this paper employed a convolutional neural network (CNN) for nonlinear fitting. Experimental results demonstrate the sensor's ability to perform temperature measurement in the range of -20 °C to 100 °C, with a best resolution of 0.00287 °C (2.87 mK). The resolution and reliability of the measurements are validated by comparison with the theoretical values. This study introduces a novel approach to silicon waveguide-based temperature sensing.
本文提出了一种基于硅波导的低复杂度高灵敏度集成温度传感器。通过时域有限差分(FDTD)模拟对波导布局进行了优化,压缩锥形结构提高了散斑数据采集效率,同时降低了系统复杂度和成本。为实现精确的温度解调,本文采用卷积神经网络(CNN)进行非线性拟合。实验结果表明,该传感器能够在-20°C至100°C范围内进行温度测量,最佳分辨率为0.00287°C(2.87 mK)。通过与理论值比较验证了测量的分辨率和可靠性。本研究介绍了一种基于硅波导温度传感的新方法。