Suppr超能文献

一种基于人工智能的新型老年人跌倒风险预测合作模型。

A Novel Cooperative AI-Based Fall Risk Prediction Model for Older Adults.

作者信息

Mohan Deepika, Chong Peter Han Joo, Gutierrez Jairo

机构信息

Department of Electrical and Electronic Engineering, Auckland University of Technology, Auckland 1010, New Zealand.

Department of Computer and Information Sciences, Auckland University of Technology, Auckland 1010, New Zealand.

出版信息

Sensors (Basel). 2025 Jun 26;25(13):3991. doi: 10.3390/s25133991.

Abstract

Older adults make up about 12% of the public sector, primary care, and hospital use and represent a large proportion of the users of healthcare services. Older people are also more vulnerable to serious injury from unexpected falls due to tripping, slipping, or illness. This underscores the immediate necessity of stable and cost-effective e-health technologies in maintaining independent living. Artificial intelligence (AI) and machine learning (ML) offer promising solutions for early fall prediction and continuous health monitoring. This paper introduces a novel cooperative AI model that forecasts the risk of future falls in the elderly based on behavioral and health abnormalities. Two AI models' predictions are combined to produce accurate predictions: The AI1 model is based on vital signs using Fuzzy Logic, and the AI2 model is based on Activities of Daily Living (ADLs) using a Deep Belief Network (DBN). A meta-model then combines the outputs to generate a total fall risk prediction. The results show 85.71% sensitivity, 100% specificity, and 90.00% prediction accuracy when compared to the Morse Falls Scale (MFS). This emphasizes how deep learning-based cooperative systems can improve well-being for older adults living alone, facilitate more precise fall risk assessment, and improve preventive care.

摘要

老年人约占公共部门、初级保健和医院服务使用人群的12%,是医疗保健服务使用者中的很大一部分。老年人也更容易因绊倒、滑倒或疾病而意外跌倒导致严重受伤。这凸显了稳定且具成本效益的电子健康技术对于维持独立生活的迫切必要性。人工智能(AI)和机器学习(ML)为早期跌倒预测和持续健康监测提供了有前景的解决方案。本文介绍了一种新颖的协作式人工智能模型,该模型基于行为和健康异常情况预测老年人未来跌倒的风险。通过结合两个人工智能模型的预测结果来产生准确的预测:AI1模型基于使用模糊逻辑的生命体征,AI2模型基于使用深度信念网络(DBN)的日常生活活动(ADL)。然后,一个元模型将这些输出结果进行整合,以生成总体跌倒风险预测。与莫尔斯跌倒量表(MFS)相比,结果显示灵敏度为85.71%,特异性为100%,预测准确率为90.00%。这强调了基于深度学习的协作系统如何能够改善独居老年人的福祉,促进更精确的跌倒风险评估,并改善预防保健。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f93/12251732/a9a38b09c2b6/sensors-25-03991-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验