Suppr超能文献

基于海上无人系统和深度强化学习的长时间协作搜索与救援

Long-Endurance Collaborative Search and Rescue Based on Maritime Unmanned Systems and Deep-Reinforcement Learning.

作者信息

Dong Pengyan, Liu Jiahong, Tao Hang, Zhao Yang, Feng Zhijie, Luo Hanjiang

机构信息

College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.

School of Information Engineering, Qingdao Binhai University, Qingdao 266555, China.

出版信息

Sensors (Basel). 2025 Jun 27;25(13):4025. doi: 10.3390/s25134025.

Abstract

Maritime vision sensing can be applied to maritime unmanned systems to perform search and rescue (SAR) missions under complex marine environments, as multiple unmanned aerial vehicles (UAVs) and unmanned surface vehicles (USVs) are able to conduct vision sensing through the air, the water-surface, and underwater. However, in these vision-based maritime SAR systems, collaboration between UAVs and USVs is a critical issue for successful SAR operations. To address this challenge, in this paper, we propose a long-endurance collaborative SAR scheme which exploits the complementary strengths of the maritime unmanned systems. In this scheme, a swarm of UAVs leverages a multi-agent reinforcement-learning (MARL) method and probability maps to perform cooperative first-phase search exploiting UAV's high altitude and wide field of view of vision sensing. Then, multiple USVs conduct precise real-time second-phase operations by refining the probabilistic map. To deal with the energy constraints of UAVs and perform long-endurance collaborative SAR missions, a multi-USV charging scheduling method is proposed based on MARL to prolong the UAVs' flight time. Through extensive simulations, the experimental results verified the effectiveness of the proposed scheme and long-endurance search capabilities.

摘要

海上视觉传感可应用于海上无人系统,以便在复杂海洋环境下执行搜索和救援(SAR)任务,因为多架无人机(UAV)和无人水面舰艇(USV)能够在空中、水面和水下进行视觉传感。然而,在这些基于视觉的海上SAR系统中,无人机和无人水面舰艇之间的协作是成功进行SAR行动的关键问题。为应对这一挑战,在本文中,我们提出了一种长航时协作SAR方案,该方案利用了海上无人系统的互补优势。在该方案中,一群无人机利用多智能体强化学习(MARL)方法和概率地图,利用无人机的高空和宽视野视觉传感能力进行协作式第一阶段搜索。然后,多艘无人水面舰艇通过细化概率地图来进行精确的实时第二阶段行动。为应对无人机的能量限制并执行长航时协作SAR任务,提出了一种基于MARL的多无人水面舰艇充电调度方法,以延长无人机的飞行时间。通过大量仿真,实验结果验证了所提方案的有效性和长航时搜索能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b2e/12252299/31ff01aba238/sensors-25-04025-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验