Suppr超能文献

LKD-YOLOv8:一种基于轻量级知识蒸馏的红外目标检测方法。

LKD-YOLOv8: A Lightweight Knowledge Distillation-Based Method for Infrared Object Detection.

作者信息

Cao Xiancheng, Hu Yueli, Zhang Haikun

机构信息

School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.

School of Mathematics-Physics and Finance, Anhui Polytechnic University, Wuhu 241000, China.

出版信息

Sensors (Basel). 2025 Jun 29;25(13):4054. doi: 10.3390/s25134054.

Abstract

Currently, infrared object detection is utilized in a broad spectrum of fields, including military applications, security, and aerospace. Nonetheless, the limited computational power of edge devices presents a considerable challenge in achieving an optimal balance between accuracy and computational efficiency in infrared object detection. In order to enhance the accuracy of infrared target detection and strengthen the implementation of robust models on edge platforms for rapid real-time inference, this paper presents LKD-YOLOv8, an innovative infrared object detection method that integrates YOLOv8 architecture with masked generative distillation (MGD), further augmented by the lightweight convolution design and attention mechanism for improved feature adaptability. Linear deformable convolution (LDConv) strengthens spatial feature extraction by dynamically adjusting kernel offsets, while coordinate attention (CA) refines feature alignment through channel-wise interaction. We employ a large-scale model (YOLOv8s) as the teacher to imparts knowledge and supervise the training of a compact student model (YOLOv8n). Experiments show that LKD-YOLOv8 achieves a 1.18% mAP@0.5:0.95 improvement over baseline methods while reducing the parameter size by 7.9%. Our approach effectively balances accuracy and efficiency, rendering it applicable for resource-constrained edge devices in infrared scenarios.

摘要

目前,红外目标检测在包括军事应用、安全和航空航天在内的广泛领域中得到应用。然而,边缘设备有限的计算能力在红外目标检测中实现精度和计算效率之间的最佳平衡方面带来了相当大的挑战。为了提高红外目标检测的精度,并加强在边缘平台上实现强大模型以进行快速实时推理,本文提出了LKD-YOLOv8,这是一种创新的红外目标检测方法,它将YOLOv8架构与掩码生成蒸馏(MGD)相结合,并通过轻量级卷积设计和注意力机制进一步增强,以提高特征适应性。线性可变形卷积(LDConv)通过动态调整内核偏移量来加强空间特征提取,而坐标注意力(CA)通过通道间交互来优化特征对齐。我们采用大规模模型(YOLOv8s)作为教师模型来传授知识并监督紧凑学生模型(YOLOv8n)的训练。实验表明,LKD-YOLOv8比基线方法在mAP@0.5:0.95上提高了1.18%,同时参数大小减少了7.9%。我们的方法有效地平衡了精度和效率,使其适用于红外场景中资源受限的边缘设备。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f0f/12251839/1ecdb0486fe1/sensors-25-04054-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验