Suppr超能文献

基于改进变分模态分解与鹦鹉算法的天基引力波信号去噪研究

Research on Space-Based Gravitational Wave Signal Denoising Based on Improved VMD with Parrot Algorithm.

作者信息

Xi Jingyi, Li Xiaolong, Liu Yunqing, Xu Dongpo, Shen Qiuping, Liu Hanyang

机构信息

Institute of Electronic Information Engineering, Changchun University of Science and Technology, Changchun 130022, China.

Jilin Provincial Science and Technology Innovation Center of Intelligent Perception and Information Processing, Changchun 130022, China.

出版信息

Sensors (Basel). 2025 Jun 30;25(13):4065. doi: 10.3390/s25134065.

Abstract

Gravitational wave (GW) signals are often affected by noise interference in the detection system; in order to attenuate the impact of detector noise and enhance the waveform characteristics of the signal, this paper proposes a space-based GW signal denoising method that combines the Parrot algorithm (PO) with the improved wavelet threshold (IWT) to optimize the variational mode decomposition (VMD). To address the challenge of selecting the number of modes K and the penalty factor α in VMD, PO is introduced to select the optimal parameters, achieving a good balance between global search and local optimization. The components after modal decomposition are divided into preserved modal components and noise modal components, and the IWT is introduced to further denoise the noise modal components; finally, the signal is reconstructed to achieve the purpose of denoising the GW signal. The algorithm is verified by the GW simulation signal and the measured signal. The experimental results show that the algorithm is superior to other algorithms in the noise separation of GW signals, significantly improves the SNR, improves the detection accuracy of GW, and provides a new technical means for the extraction and analysis of GW signals.

摘要

引力波(GW)信号在检测系统中常常受到噪声干扰;为了减弱探测器噪声的影响并增强信号的波形特征,本文提出一种基于空间的GW信号去噪方法,该方法将鹦鹉算法(PO)与改进的小波阈值(IWT)相结合以优化变分模态分解(VMD)。为了解决VMD中模态数K和惩罚因子α的选择难题,引入PO来选择最优参数,在全局搜索和局部优化之间实现了良好平衡。模态分解后的分量被分为保留模态分量和噪声模态分量,并引入IWT对噪声模态分量进一步去噪;最后,对信号进行重构以实现GW信号去噪的目的。该算法通过GW模拟信号和实测信号进行了验证。实验结果表明,该算法在GW信号的噪声分离方面优于其他算法,显著提高了信噪比,提升了GW的检测精度,为GW信号的提取与分析提供了一种新的技术手段。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5ea/12252285/532205565fa1/sensors-25-04065-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验