Massarani Alyaman H, Badr Mahmoud M, Baza Mohamed, Alshahrani Hani, Alshehri Ali
Computer Science and Engineering Department, The American University in Cairo, Cairo 11835, Egypt.
Department of Cybersecurity, College of Engineering, SUNY Polytechnic Institute, Utica, NY 13502, USA.
Sensors (Basel). 2025 Jul 1;25(13):4111. doi: 10.3390/s25134111.
Electricity theft remains a pressing challenge in modern smart grid systems, leading to significant economic losses and compromised grid stability. This paper presents a sensor-driven framework for electricity theft detection that leverages data collected from smart meter sensors, key components in smart grid monitoring infrastructure. The proposed approach combines prototype learning and meta-level ensemble learning to develop a scalable and accurate detection model, capable of identifying zero-day attacks that are not present in the training data. Smart meter data is compressed using Principal Component Analysis (PCA) and K-means clustering to extract representative consumption patterns, i.e., prototypes, achieving a 92% reduction in dataset size while preserving critical anomaly-relevant features. These prototypes are then used to train base-level one-class classifiers, specifically the One-Class Support Vector Machine (OCSVM) and the Gaussian Mixture Model (GMM). The outputs of these classifiers are normalized and fused in a meta-OCSVM layer, which learns decision boundaries in the transformed score space. Experimental results using the Irish CER Smart Metering Project (SMP) dataset show that the proposed sensor-based detection framework achieves superior performance, with an accuracy of 88.45% and a false alarm rate of just 13.85%, while reducing training time by over 75%. By efficiently processing high-frequency smart meter sensor data, this model contributes to developing real-time and energy-efficient anomaly detection systems in smart grid environments.
窃电在现代智能电网系统中仍然是一个紧迫的挑战,会导致重大经济损失并危及电网稳定性。本文提出了一种基于传感器的窃电检测框架,该框架利用从智能电表传感器收集的数据,这些传感器是智能电网监测基础设施的关键组件。所提出的方法结合了原型学习和元级集成学习,以开发一个可扩展且准确的检测模型,能够识别训练数据中不存在的零日攻击。使用主成分分析(PCA)和K均值聚类对智能电表数据进行压缩,以提取代表性的用电模式,即原型,在保留与异常相关的关键特征的同时,使数据集大小减少了92%。然后,这些原型被用于训练基础级别的单类分类器,特别是单类支持向量机(OCSVM)和高斯混合模型(GMM)。这些分类器的输出在元OCSVM层中进行归一化和融合,该层在变换后的得分空间中学习决策边界。使用爱尔兰CER智能电表项目(SMP)数据集的实验结果表明,所提出的基于传感器的检测框架具有卓越的性能,准确率为88.45%,误报率仅为13.85%,同时将训练时间减少了75%以上。通过高效处理高频智能电表传感器数据,该模型有助于在智能电网环境中开发实时且节能的异常检测系统。