Suppr超能文献

基于主成分分析和偏最小二乘回归的机器学习模型,利用近红外光谱预测异质土壤中的尿素氮含量

PCA- and PLSR-Based Machine Learning Model for Prediction of Urea-N Content in Heterogeneous Soils Using Near-Infrared Spectroscopy.

作者信息

Crescini Damiano, Mascialino Gabriele, Moggia Nicola, Piubeni Giordano, Serpelloni Mauro, Sardini Emilio

机构信息

Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy.

出版信息

Sensors (Basel). 2025 Jul 4;25(13):4176. doi: 10.3390/s25134176.

Abstract

Determining the soil's nitrogen supply accurately and quickly is essential for effective agricultural management. This study explores the use of near-infrared (NIR) spectroscopy combined with spectral pre-processing techniques (such as Savitzky-Golay filtering) and partial least squares regression (PLSR) to assess soil nitrogen levels. Six soil types of varying compositions, treated with different levels of Urea-N fertilizer, were examined. Nitrogen-specific NIR peaks were identified, and regression models were consequently developed. Through a comparison of the performance of the models, the most effective model for nitrogen detection was selected. In calibration, the models performed well, with high R (over 0.9) and low root mean square error (RMSE) values. The second derivative-based (SD) model slightly outperformed the first derivative-based (FD) model in terms of accuracy. Both models showed minimal bias, indicating reliable performance. During validation, the FD model outperformed the SD model in terms of R, root mean square error of prediction (RMSEP), and residual prediction deviation (RPD). Thus, the FD model demonstrated good predictive ability (R = 0.77, RPD = 2.06), while the SD model was less effective (R = 0.65, RPD = 1.77). Compared to previous studies, this study uniquely combines real-time online detection capability with low computational cost, unlike most prior offline approaches, and includes model validation across various soil types. Overall, NIR spectroscopy coupled with multivariate models proves to be a promising tool for the detection of nitrogen levels in various soils.

摘要

准确快速地测定土壤氮素供应对于有效的农业管理至关重要。本研究探索了结合光谱预处理技术(如Savitzky-Golay滤波)和偏最小二乘回归(PLSR)的近红外(NIR)光谱法来评估土壤氮水平。研究了六种不同成分的土壤类型,这些土壤用不同水平的尿素氮肥料进行处理。识别出了氮特异性近红外峰,并据此建立了回归模型。通过比较模型的性能,选择了最有效的氮检测模型。在校准过程中,模型表现良好,具有高R值(超过0.9)和低均方根误差(RMSE)值。基于二阶导数(SD)的模型在准确性方面略优于基于一阶导数(FD)的模型。两个模型的偏差都很小,表明性能可靠。在验证过程中,FD模型在R值、预测均方根误差(RMSEP)和残差预测偏差(RPD)方面优于SD模型。因此,FD模型显示出良好的预测能力(R = 0.77,RPD = 2.06),而SD模型效果较差(R = 0.65,RPD = 1.77)。与先前的研究相比,本研究独特地将实时在线检测能力与低计算成本相结合,这与大多数先前的离线方法不同,并且包括了跨各种土壤类型的模型验证。总体而言,近红外光谱结合多变量模型被证明是检测各种土壤中氮水平的一种有前途的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7c5/12252165/c0ba7b13f99f/sensors-25-04176-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验