Suppr超能文献

使用rGO@CuO纳米复合材料在可见光和直射阳光下对多西环素进行快速完全光降解:机理洞察与实时适用性

A Rapid and Complete Photodegradation of Doxycycline Using rGO@CuO Nanocomposite Under Visible and Direct Sunlight: Mechanistic Insights and Real-Time Applicability.

作者信息

Verma Panchraj, Das Subrata, Raj Shubham, Schneider Raphaël

机构信息

Applied Chemistry Lab, Department of Chemistry, National Institute of Technology Patna, Bihar 800005, India.

LRGP, CNRS, Université de Lorraine, F-54000 Nancy, France.

出版信息

Nanomaterials (Basel). 2025 Jun 20;15(13):953. doi: 10.3390/nano15130953.

Abstract

In this study, a simple and efficient hydrothermal strategy was developed to modify reduced graphene oxide (rGO) with copper (II) oxide (CuO) nanoparticles by varying the weight ratio of rGO relative to CuO (rGO@CuO, rGO@CuO, and rGO@CuO). The obtained materials were further characterized using analytical tools. Photocatalytic performance was assessed using adsorption-photocatalysis experiments under a household LED light source (10 W, λ > 400 nm), and the degree of degradation of doxycycline (DOX) was evaluated using UV-Vis spectrophotometer. The highest efficiency of 100% was achieved with a DOX concentration of 70 ppm, rGO@CuO dosage of 1 mg/mL, and pH 7 within 30 min of irradiation. The degradation kinetics followed the pseudo-first-order model (R ~0.99) and the Langmuir adsorption isotherm, indicating that DOX on the surface is governed by a dynamic equilibrium between adsorption and degradation rates. Furthermore, efficacy was tested using real water samples, and the recyclability of the catalyst was evaluated in up to five cycles.

摘要

在本研究中,开发了一种简单有效的水热策略,通过改变还原氧化石墨烯(rGO)与氧化铜(CuO)纳米颗粒的重量比(rGO@CuO、rGO@CuO和rGO@CuO)来修饰还原氧化石墨烯。使用分析工具对所得材料进行进一步表征。在家用LED光源(10 W,λ>400 nm)下通过吸附-光催化实验评估光催化性能,并使用紫外-可见分光光度计评估多西环素(DOX)的降解程度。在DOX浓度为70 ppm、rGO@CuO用量为1 mg/mL且pH为7的条件下,在30分钟的辐照时间内实现了100%的最高效率。降解动力学遵循准一级模型(R~0.99)和朗缪尔吸附等温线,表明表面上的DOX受吸附和降解速率之间的动态平衡控制。此外,使用实际水样测试了有效性,并评估了催化剂在多达五个循环中的可回收性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f292/12251118/2db52fc3ccec/nanomaterials-15-00953-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验