Mollaamin Fatemeh, Monajjemi Majid
Department of Biomedical Engineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu 37150, Turkey.
Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran 1496969191, Iran.
Nanomaterials (Basel). 2025 Jun 20;15(13):959. doi: 10.3390/nano15130959.
Germanium/tin-containing silicon oxide [SiO-(GeO/SnO)] nanoclusters have been designed with different Si/Ge/Sn particles and characterized as electrodes for magnesium-ion batteries (MIBs) due to forming MgBe [SiO-GeO], MgBe [SiO-SnO], MgCa [SiO-GeO], and MgCa [SiO-SnO] complexes. In this work, alkaline earth metals of magnesium (Mg), beryllium (Be), and calcium (Ca) have been studied in hybrid Mg-, Be-, and Ca-ion batteries. An expanded investigation on H capture by MgBe [SiO-(GeO/SnO)] or MgCa [SiO-(GeO/SnO)] complexes was probed using computational approaches due to density state analysis of charge density differences (CDD), total density of states (TDOS), and electron localization function (ELF) for hydrogenated hybrid clusters of MgBe [SiO-GeO], MgBe [SiO-SnO], MgCa [SiO-GeO], and MgCa [SiO-SnO]. Replacing Si by Ge/Sn content can increase battery capacity through MgBe [SiO-GeO], MgBe [SiO-SnO], MgCa [SiO-GeO], and MgCa [SiO-SnO] nanoclusters for hydrogen adsorption processes and could improve the rate performances by enhancing electrical conductivity. A small portion of Mg, Be, or Ca entering the Si-Ge or Si-Sn layer to replace the alkaline earth metal sites could improve the structural stability of the electrode material at high multiplicity, thereby improving the capacity retention rate. In fact, the MgBe [SiO-GeO] remarks a small enhancement in charge transfer before and after hydrogen adsorption, confirming the good structural stability. In addition, [SiO-(GeO/SnO)] anode material could augment the capacity owing to higher surface capacitive impacts.
含锗/锡的氧化硅[SiO-(GeO/SnO)]纳米团簇已被设计成具有不同的硅/锗/锡颗粒,并因其能形成MgBe [SiO-GeO]、MgBe [SiO-SnO]、MgCa [SiO-GeO]和MgCa [SiO-SnO]配合物而被表征为镁离子电池(MIBs)的电极。在这项工作中,对镁(Mg)、铍(Be)和钙(Ca)等碱土金属在混合镁离子、铍离子和钙离子电池中的性能进行了研究。由于对MgBe [SiO-GeO]、MgBe [SiO-SnO]、MgCa [SiO-GeO]和MgCa [SiO-SnO]氢化混合团簇的电荷密度差(CDD)、总态密度(TDOS)和电子定位函数(ELF)进行了密度态分析,因此使用计算方法对MgBe [SiO-(GeO/SnO)]或MgCa [SiO-(GeO/SnO)]配合物捕获氢的情况进行了扩展研究。用锗/锡含量取代硅可以通过MgBe [SiO-GeO]、MgBe [SiO-SnO]、MgCa [SiO-GeO]和MgCa [SiO-SnO]纳米团簇用于氢吸附过程来提高电池容量,并通过提高电导率来改善倍率性能。一小部分镁、铍或钙进入硅锗或硅锡层以取代碱土金属位点,可以在高多重性下提高电极材料的结构稳定性,从而提高容量保持率。事实上,MgBe [SiO-GeO]在氢吸附前后的电荷转移有小幅增强,证实了其良好的结构稳定性。此外,[SiO-(GeO/SnO)]负极材料由于更高的表面电容效应而可以增加容量。