通过同轴静电纺丝沉积的具有先进光学和磁性的新型核壳金属氧化物纳米纤维

Novel Core-Shell Metal Oxide Nanofibers with Advanced Optical and Magnetic Properties Deposited by Co-Axial Electrospinning.

作者信息

Viter Roman, Zabolotnii Viktor, Sahul Martin, Čaplovičová Mária, Tepliakova Iryna, Sints Viesturs, Fioravanti Ambra

机构信息

Faculty of Science and Technology, University of Latvia, 19 Raina Blvd, LV 1586 Riga, Latvia.

Institute of Materials Science, Slovak University of Technology in Bratislava, Jána Bottu 25, 917 24 Trnava, Slovakia.

出版信息

Nanomaterials (Basel). 2025 Jul 2;15(13):1026. doi: 10.3390/nano15131026.

Abstract

Co-axial electrospinning is one of the facile methods for the fabrication of core-shell metal oxides for environmental applications. Indeed, core-shell architectures featuring a magnetic core and a photocatalytic shell represent a novel approach to catalytic nanostructures in applications such as water treatment and pollutant removal via magnetic separation. This study focuses on the fabrication of novel FeO-FeNiO/NiO core-shell nanofibers with enhanced optical and magnetic properties using co-axial electrospinning. The aim is to optimize the fabrication parameters, particularly the amount of metal precursor in the starting solutions, to achieve well-defined core and shell structures (rather than single-phase spinels), and to investigate phase transitions, structural characteristics, as well as the optical and magnetic properties of the resulting nanofibers. Raman, XRD, and XPS results show several phases and high defect concentration in the NiO shell. The FeO-FeNiO/NiO core-shell nanofibers exhibit strong visible-light absorption and significant magnetization. These advanced properties highlight their potential in photocatalytic applications.

摘要

同轴静电纺丝是制备用于环境应用的核壳型金属氧化物的简便方法之一。实际上,具有磁性核和光催化壳的核壳结构代表了一种用于催化纳米结构的新方法,可应用于水处理和通过磁分离去除污染物等领域。本研究聚焦于使用同轴静电纺丝制备具有增强光学和磁性性能的新型FeO-FeNiO/NiO核壳纳米纤维。目的是优化制备参数,特别是起始溶液中金属前驱体的用量,以实现明确的核壳结构(而非单相尖晶石),并研究所得纳米纤维的相变、结构特征以及光学和磁性性能。拉曼光谱、X射线衍射和X射线光电子能谱结果表明,NiO壳中有多个相且缺陷浓度较高。FeO-FeNiO/NiO核壳纳米纤维表现出强烈的可见光吸收和显著的磁化强度。这些优异性能凸显了它们在光催化应用中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2639/12250830/4cf619920468/nanomaterials-15-01026-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索