Suppr超能文献

使用实验设计优化固体脂质纳米粒制剂,第一部分:

Optimization of Solid Lipid Nanoparticle Formulation Using Design of Experiments, PART I: .

作者信息

Cassayre Margot, Teles de Souza Dany, Claeys-Bruno Magalie, Altié Alexandre, Piccerelle Philippe, Sauzet Christophe

机构信息

CNRS, IRD, IMBE, Avignon Université, Aix-Marseille University, 13385 Marseille, France.

CNRS, CINAM, Aix-Marseille University, 13009 Marseille, France.

出版信息

Nanomaterials (Basel). 2025 Jul 3;15(13):1034. doi: 10.3390/nano15131034.

Abstract

This study presents a methodological framework for optimizing "blank" solid lipid nanoparticles (SLNs), focusing on the use of a design of experiments (DOE) approach. Rather than emphasizing the applications of SLNs, the objective is to identify and optimize critical formulation and process parameters-specifically those influencing particle size (PS), polydispersity index (PDI), and zeta potential (ZP)-during early development stages. A non-classical mixed design was applied using AZURAD software (version 4.4.1), incorporating a mixture variable for lipid composition (comprising carnauba wax, glyceryl behenate, glyceryl distearate), and two quantitative factors: the percentage of polysorbate 80 (P80) in the P80/sorbitan oleate surfactant system and ultrasound (US) treatment time. The DOE analysis identified P80 concentration as a key parameter, with optimal formulations observed when P80 ranged between 35% and 45%. A fixed P80 ratio of 41% and a US time of 7.5 min enabled precise adjustment of lipid composition. Following a desirability function analysis, an optimized formulation was obtained with a PS of 176.3 ± 2.78 nm, a PDI of 0.268 ± 0.022, and a ZP of -35.5 ± 0.36 mV. These findings validate the relevance of our DOE-based strategy, offering a scalable, cost-effective platform that reduces material use, time, and analytical effort in SLN development.

摘要

本研究提出了一种用于优化“空白”固体脂质纳米粒(SLNs)的方法框架,重点是采用实验设计(DOE)方法。目标不是强调SLNs的应用,而是在早期开发阶段识别并优化关键的制剂和工艺参数,特别是那些影响粒径(PS)、多分散指数(PDI)和zeta电位(ZP)的参数。使用AZURAD软件(版本4.4.1)应用了一种非经典混合设计,纳入了脂质组成的混合变量(包括巴西棕榈蜡、山嵛酸甘油酯、二硬脂酸甘油酯),以及两个定量因素:聚山梨酯80(P80)/油酸山梨坦表面活性剂体系中P80的百分比和超声(US)处理时间。DOE分析确定P80浓度为关键参数,当P80在35%至45%之间时观察到最佳制剂。固定的41%的P80比例和7.5分钟的超声时间能够精确调整脂质组成。经过合意性函数分析,获得了一种优化制剂,其PS为176.3±2.78nm,PDI为0.268±0.022,ZP为-35.5±0.36mV。这些发现验证了我们基于DOE的策略的相关性,提供了一个可扩展、具有成本效益的平台,可减少SLN开发中的材料使用、时间和分析工作量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdae/12250869/c20a6d435935/nanomaterials-15-01034-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验