Suppr超能文献

无监督机器学习在脓毒性休克表型识别及其院内结局中的应用:一项多中心队列研究

Unsupervised Machine Learning in Identification of Septic Shock Phenotypes and Their In-Hospital Outcomes: A Multicenter Cohort Study.

作者信息

Ang Song Peng, Chia Jia Ee, Lee Eunseuk, Lorenzo-Capps Maria Jose, Laezzo Madison, Iglesias Jose

机构信息

Department of Medicine, Division of Cardiology, Sarver Heart Center, University of Arizona College of Medicine, Tucson, AZ 85724, USA.

Department of Medicine, Rutgers Health/Community Medical Center, Toms River, NJ 08755, USA.

出版信息

J Clin Med. 2025 Jun 23;14(13):4450. doi: 10.3390/jcm14134450.

Abstract

Septic shock is a heterogeneous syndrome with diverse clinical presentations and pathophysiology, yet current management guidelines largely treat it as a homogenous entity. Early risk stratification relies on lactate and different predictive scoring systems, which may not capture the underlying heterogeneity in host responses. To identify discrete subphenotypes of septic shock using admission demographics and laboratory parameters, and to evaluate their relationship with in-hospital outcomes. We conducted a retrospective multicenter cohort study of 10,462 adult patients with ICD-10-defined septic shock admitted to intensive care units between 2014 and 2015. We used Two-Step Cluster Analysis using log-likelihood distance and the Bayesian Information Criterion to identify two distinct phenotypes. We compared clusters on baseline characteristics, in-hospital outcomes including mortality, days on mechanical ventilation, vasopressor use, acute kidney injury (AKI), AKI requiring renal replacement therapy (RRT), and ICU and hospital lengths of stay. We identified two clusters (Cluster 1, n = 5355 and Cluster 2, n = 5107) in our study. Cluster 1 showed greater biochemical severity at presentation, including higher median lactate (2.40 vs. 2.20 mmol L; < 0.001), serum creatinine (1.39 vs. 1.20 mg dL; < 0.001), blood urea nitrogen (28 vs. 25 mg dL; < 0.001), and neutrophil-to-lymphocyte ratio (11.12 vs. 10.38; < 0.001), and a higher mean SOFA score (7.05 ± 3.85 vs. 6.76 ± 3.87; < 0.001). Despite this, Cluster 1 required mechanical ventilation more frequently (46.1% vs. 42.2%; < 0.001) and had a higher incidence of AKI (58.1% vs. 55.6%; = 0.009), including more stage 3 AKI (17.2% vs. 15.2%; < 0.001) and dialysis (6.6% vs. 5.2%; = 0.005), yet experienced similar in-hospital mortality (15.4% vs. 15.8%; = 0.615) and comparable ICU (2.18 vs. 2.26 days; = 0.254) and hospital lengths of stay (6.63 vs. 6.80 days; = 0.251). Two septic shock phenotypes were identified, one with marked early organ dysfunction (Cluster 1) and another with milder initial derangements (Cluster 2), yet both showed convergent short-term mortality and lengths of stay despite divergent support needs. These results challenge reliance on single-parameter severity markers and underscore the need for phenotype-guided risk stratification and personalized management strategies in septic shock.

摘要

感染性休克是一种具有多种临床表现和病理生理学特征的异质性综合征,但目前的管理指南在很大程度上把它当作一个同质化的实体来对待。早期风险分层依赖于乳酸水平和不同的预测评分系统,而这些可能无法捕捉宿主反应中潜在的异质性。为了利用入院人口统计学和实验室参数识别感染性休克的离散亚表型,并评估它们与院内结局的关系。我们对2014年至2015年间入住重症监护病房的10462例符合ICD - 10定义的成年感染性休克患者进行了一项回顾性多中心队列研究。我们使用基于对数似然距离和贝叶斯信息准则的两步聚类分析来识别两种不同的表型。我们比较了两个聚类在基线特征、院内结局方面的差异,这些结局包括死亡率、机械通气天数、血管活性药物使用情况、急性肾损伤(AKI)、需要肾脏替代治疗(RRT)的AKI以及重症监护病房(ICU)和住院时间。在我们的研究中,我们识别出两个聚类(聚类1,n = 5355;聚类2,n = 5107)。聚类1在入院时表现出更高的生化严重程度,包括更高的乳酸中位数(2.40 vs. 2.20 mmol/L;P < 0.001)、血清肌酐(1.39 vs. 1.20 mg/dL;P < 0.001)、血尿素氮(28 vs. 25 mg/dL;P < 0.001)以及中性粒细胞与淋巴细胞比值(11.12 vs. 10.38;P < 0.001),并且平均序贯器官衰竭评估(SOFA)评分更高(7.05 ± 3.85 vs. 6.76 ±  3.87;P < 0.001)。尽管如此,聚类1更频繁地需要机械通气(46.1% vs. 42.2%;P < 0.001),并且AKI的发生率更高(58.1% vs. 55.6%;P = 0.009),包括更多的3期AKI(17.2% vs. 15.2%;P < 0.001)和透析(6.6% vs. 5.2%;P = 0.005),然而其院内死亡率相似(15.4% vs. 15.8%;P = 0.615),并且ICU住院时间(2.18 vs. 2.26天;P = 0.254)和住院时间相当(6.63 vs. 6.80天;P = 0.251)。识别出了两种感染性休克表型,一种具有明显的早期器官功能障碍(聚类1),另一种初始紊乱较轻(聚类2),尽管支持需求不同,但两者在短期死亡率和住院时间方面表现趋同。这些结果对依赖单参数严重程度标志物提出了挑战,并强调了在感染性休克中进行表型导向的风险分层和个性化管理策略的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c10/12250135/5d7611e522a5/jcm-14-04450-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验