Lewontin Myra, Kaplan Emily, Bilchick Kenneth C, Barber Anita, Bivona Derek, Kramer Christopher M, Parrish Anna, McClean Karen, Thomas Matthew, Perry Allison, Amos Kaitlyn, Ayers Michael
Cardiovascular Division, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22903, USA.
J Clin Med. 2025 Jul 3;14(13):4718. doi: 10.3390/jcm14134718.
Hypertrophic cardiomyopathy (HCM) often presents later in the disease course, with frequent misdiagnoses and population-level underdiagnoses. Underserved patients may have even greater diagnostic delays. We aimed to test the hypothesis in a retrospective cohort that artificial intelligence analysis of ECGs (AI-ECG) could have afforded the opportunity for earlier diagnosis of HCM in one health system. We collected all available ECGs from patients referred to an HCM Center of Excellence over 15 years, both before and after HCM diagnosis. We applied AI-ECG to each ECG in a blinded fashion to predict the probability of HCM. We calculated the time between each patient's AI-ECG diagnosis and clinical diagnosis. We examined the sensitivity and specificity of AI-ECG for all patients, and by septal subtype and genetic test result. 3499 ECGs were analyzed in 404 patients (age 56 ± 18 years, 52% female). AI-ECG correctly identified HCM in 155 patients with a sensitivity of 67%, specificity of 95%, positive predictive value of 94%, and a negative predictive value of 69%. The AUC was similar using mean probability from all ECGs for each patient (AUC 0.91 [0.88, 0.94]) or using probability from the first ECG (AUC 0.91 [0.87,0.93]). AI-ECG diagnosed 27 patients over 1 year before clinical diagnosis, and up to 16.3 years early. Black patients were more likely than White patients to have an AI-ECG diagnosis before a clinical diagnosis ( = 0.005). AI-ECG offers the potential for advanced HCM diagnosis. Differences in identification timing between subgroups highlight inequities in current care and show the potential of AI-ECG for the greatest benefit in underserved ethnic groups.
肥厚型心肌病(HCM)常在疾病进程后期出现,常被误诊,在人群层面也存在诊断不足的情况。医疗服务不足的患者可能会有更长的诊断延迟。我们旨在通过一项回顾性队列研究来验证这一假设:在一个医疗系统中,心电图人工智能分析(AI-ECG)能否为HCM的早期诊断提供机会。我们收集了15年来转诊至HCM卓越中心的患者在HCM诊断前后的所有可用心电图。我们以盲法将AI-ECG应用于每份心电图,以预测HCM的概率。我们计算了每位患者AI-ECG诊断与临床诊断之间的时间间隔。我们检查了AI-ECG对所有患者的敏感性和特异性,并按间隔亚型和基因检测结果进行了分析。对404例患者(年龄56±18岁,52%为女性)的3499份心电图进行了分析。AI-ECG在155例患者中正确识别出HCM,敏感性为67%,特异性为95%,阳性预测值为94%,阴性预测值为69%。使用每位患者所有心电图的平均概率(AUC 0.91[0.88,0.94])或使用第一份心电图的概率(AUC 0.91[0.87,0.93])时,AUC相似。AI-ECG在临床诊断前1年以上诊断出27例患者,最早可达16.3年。黑人患者比白人患者更有可能在临床诊断前得到AI-ECG诊断(P = 0.005)。AI-ECG为HCM的高级诊断提供了潜力。亚组之间在识别时间上的差异突出了当前医疗服务中的不平等,并显示了AI-ECG在医疗服务不足的种族群体中带来最大益处的潜力。