Suppr超能文献

人工智能增强心电图用于肥厚型心肌病诊断:一项系统评价和荟萃分析。

Artificial Intelligence-enhanced Electrocardiography for Hypertrophic Cardiomyopathy Diagnosis: A Systematic Review and Meta-analysis.

作者信息

Theja Fernando A, Jusni Louis F J, Soetedjo Robby, Theja Dimetrio A

机构信息

Faculty of Medicine, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia.

出版信息

J Saudi Heart Assoc. 2025 May 18;37(2):8. doi: 10.37616/2212-5043.1431. eCollection 2025.

Abstract

OBJECTIVES

Diagnosing hypertrophic cardiomyopathy (HCM) can be challenging due to its nonspecific clinical manifestations, variability in electrocardiographic (ECG) patterns, and limited access to echocardiography, the gold standard for diagnosis, often leading to delayed detection. Recent artificial intelligence (AI) advancements have enabled ECG-based algorithms to improve HCM detection. This systematic review and meta-analysis aim to assess the overall diagnostic performance of AI-enhanced ECG in identifying HCM.

METHODS

This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Articles were retrieved from PubMed, EBSCO, and Proquest. Inclusion criteria encompassed all studies evaluating AI algorithms for the detection of HCM from 12-lead ECGs. Meta-analysis was performed using R v4.4.1. Bivariate random-effects models were employed to derive pooled estimates of sensitivity, specificity, and the area under the curve (AUC) of the summary receiver operating characteristic (SROC).

RESULTS

A total of five retrospective cohort studies involving 69,343 participants, were included. The pooled sensitivity of AI-enhanced ECG for detecting HCM was 0.84, and the specificity was 0.86. The AI-enhanced ECG demonstrated excellent diagnostic accuracy, with an SROC-AUC of 0.927 in detecting HCM.

CONCLUSION

AI-enhanced ECG shows promise as a novel screening tool for detecting hypertrophic cardiomyopathy. However, the considerable heterogeneity and the limited number of studies necessitate careful interpretation and highlight the need for additional research in the future.

摘要

目的

肥厚型心肌病(HCM)的诊断具有挑战性,因为其临床表现不具特异性,心电图(ECG)模式存在变异性,且作为诊断金标准的超声心动图检查机会有限,这常常导致检测延迟。近期人工智能(AI)的进展使基于心电图的算法得以改进HCM的检测。本系统评价和荟萃分析旨在评估人工智能增强心电图在识别HCM方面的总体诊断性能。

方法

本研究遵循系统评价和荟萃分析的首选报告项目(PRISMA)指南。从PubMed、EBSCO和Proquest检索文章。纳入标准包括所有评估从12导联心电图检测HCM的人工智能算法的研究。使用R v4.4.1进行荟萃分析。采用双变量随机效应模型得出汇总敏感度、特异度以及汇总接受者操作特征曲线(SROC)下面积(AUC)的合并估计值。

结果

共纳入5项涉及69343名参与者的回顾性队列研究。人工智能增强心电图检测HCM的汇总敏感度为0.84,特异度为0.86。人工智能增强心电图在检测HCM方面显示出极佳的诊断准确性,SROC-AUC为0.927。

结论

人工智能增强心电图有望成为检测肥厚型心肌病的新型筛查工具。然而,相当大程度的异质性以及研究数量有限,需要谨慎解读,并凸显未来开展更多研究的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d80/12207979/9d74e977054c/sha19f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验