Suppr超能文献

金属有机框架衍生多孔碳中钴-氮杂原子界面处硝酸盐向氨的增强还原

Enhanced Reduction of Nitrate to Ammonia at the Co-N Heteroatomic Interface in MOF-Derived Porous Carbon.

作者信息

Liu Jing, Du Shuo, Huang Zibin, Liu Ning, Shao Zhichao, Qin Na, Wang Yanjie, Wang Hongfang, Ni Zhihui, Yang Liping

机构信息

Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, China.

Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.

出版信息

Materials (Basel). 2025 Jun 23;18(13):2976. doi: 10.3390/ma18132976.

Abstract

The electrocatalytic reduction of nitrate is an efficient and green method for NH production. In this study, a Co-containing MOF with a stable three-dimensional carbon framework that offers abundant metal active sites is prepared as a precursor to a Co-N-C electrocatalyst. Facile pyrolysis of the three-dimensional MOF affords the desired Co-N-C electrocatalyst, which exhibits excellent stability, an NH yield of 1.12 mmol h mg, and faradaic efficiency of 86.7% at -0.23 V in a 0.1 M KOH/0.1 M KNO. The excellent activity and durability are ascribed to the highly exposed active centres, large surface area, and high porosity structure. N doping allows the electronic properties to be modulated and provides outstanding stability owing to the strong interaction between the nitrogen-doped carbon support and Co nanoparticles. This study presents a simple and efficient synthesis strategy for the production of non-noble-metal electrocatalysts with abundant active sites for the nitrate reduction reaction.

摘要

硝酸盐的电催化还原是一种高效且绿色的制氨方法。在本研究中,制备了一种具有稳定三维碳骨架且提供丰富金属活性位点的含钴金属有机框架材料(MOF),作为Co-N-C电催化剂的前驱体。对三维MOF进行简单热解即可得到所需的Co-N-C电催化剂,该催化剂在0.1 M KOH/0.1 M KNO₃中于-0.23 V时表现出优异的稳定性、1.12 mmol h⁻¹ mg⁻¹的氨产率以及86.7%的法拉第效率。优异的活性和耐久性归因于高度暴露的活性中心、大表面积和高孔隙率结构。氮掺杂可调节电子性质,并且由于氮掺杂碳载体与钴纳米颗粒之间的强相互作用而提供出色的稳定性。本研究提出了一种简单有效的合成策略,用于制备具有丰富活性位点的非贵金属电催化剂以用于硝酸盐还原反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ea8/12250854/2d7c9e91814a/materials-18-02976-sch001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验