Suppr超能文献

具有封装FeCo纳米颗粒的Fe/N改性多孔碳纳米纤维用于高效电催化硝酸盐还原制氨

Fe/N modified porous carbon nanofibers with encapsulated FeCo nanoparticles for efficient electrocatalytic nitrate reduction to ammonia.

作者信息

Chen Jiayu, Wu Anni, Li Jixiang, Hong Chengyi, Tang Wenxiang, Zheng Hu, Teng Wei

机构信息

State Key Laboratory for of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.

Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China.

出版信息

J Environ Sci (China). 2025 Nov;157:90-99. doi: 10.1016/j.jes.2024.12.037. Epub 2024 Dec 31.

Abstract

The efficient electrocatalytic nitrate (NO) reduction to ammonia (NRA) offers a sustainable alternative for both environmental remediation and ammonia synthesis. Developing advanced electrocatalysts with rationally designed spatial arrangement of active sites and optimizing the synergetic effect among components are crucial for high efficiency and selectivity. Herein, we present Fe/N active sites decorated on porous carbon nanofibers (CNFs) with encapsulated FeCo nanoparticles (FeCo@CNFs-Fe/N) as electrocatalysts for NRA. The FeCo@CNFs-Fe/N catalyst demonstrates exceptional performance, achieving a high ammonia yield of 498.18 µmol/(h·g). Meanwhile, the enhanced reduction activity, especially the reduction in overpotential by 0.565 V, is 3-10 times higher than that of FeCo-encapsulated and Fe/N-modified CNFs-based catalysts. The enhanced catalytic activity is attributed to the efficient structure design and optimized spatial distribution of active sites, which enhance the electron transfer rate and decrease the reaction energy barrier. Mechanistic studies reveal that the synergetic effect between encapsulated nanoparticles and surface-modified Fe/N sites plays a crucial role in promoting efficient nitrate adsorption and selective ammonia production. These findings highlight the potential of strategically engineered CNF-based composites for nitrate reduction and other advanced electrocatalytic applications.

摘要

将硝酸盐高效电催化还原为氨为环境修复和氨合成提供了一种可持续的替代方案。开发具有合理设计的活性位点空间排列的先进电催化剂并优化各组分之间的协同效应对于提高效率和选择性至关重要。在此,我们展示了负载在多孔碳纳米纤维(CNF)上的Fe/N活性位点以及封装的FeCo纳米颗粒(FeCo@CNFs-Fe/N)作为用于硝酸盐还原的电催化剂。FeCo@CNFs-Fe/N催化剂表现出卓越的性能,实现了498.18 μmol/(h·g)的高氨产率。同时,增强的还原活性,特别是过电位降低了0.565 V,比基于FeCo封装和Fe/N修饰的CNF的催化剂高3至10倍。催化活性的增强归因于高效的结构设计和活性位点的优化空间分布,这提高了电子转移速率并降低了反应能垒。机理研究表明,封装的纳米颗粒与表面修饰的Fe/N位点之间的协同效应在促进高效硝酸盐吸附和选择性氨生成中起着关键作用。这些发现突出了基于CNF的策略性工程复合材料在硝酸盐还原和其他先进电催化应用中的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验