Li Xuli, Lan Jirong, Zhang Yong, Chen Pei, Ding Siyu, Nie Miaomiao, Li Shefeng
Hubei Province Key Laboratory of Agricultural Waste Resource Utilization, School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China.
Materials (Basel). 2025 Jun 26;18(13):3045. doi: 10.3390/ma18133045.
Electrolytic manganese residue (EMR), an acidic by-product from manganese production, presents dual challenges of environmental pollution and resource waste. This study developed a silicon-manganese organic compound fertilizer (SMOCF) via the aerobic fermentation of EMR supplemented with bagasse, molasses, and activated sludge. The physicochemical analysis revealed that the EMR's composition was dominated by silicon (7.1% active Si), calcium, sulfur, and trace elements. Critical parameters during composting-including water-soluble Mn (1.48%), organic matter (8.05%), pH (7.4), moisture (20.28%), and germination index (GI = 87.78%)-met organic fertilizer standards, with the GI exceeding the phytotoxicity threshold (80%). The final SMOCF exhibited favorable agronomic properties: neutral pH, earthy texture, and essential macronutrients (1.36% K, 1.11% N, 0.48% P). Heavy metals (As, Cd, Cr, Pb) in the SMOCF predominantly existed in stable residual forms, with total concentrations complying with China's organic fertilizer regulations (GB/T 32951-2016). The ecological risk assessment confirmed a minimal mobilization potential (risk assessment code < 5%), ensuring environmental safety. This work demonstrates a circular economy strategy to repurpose hazardous EMRs into agriculturally viable fertilizers, achieving simultaneous pollution mitigation and resource recovery. The optimized SMOCF meets quality benchmarks for organic fertilizers while addressing heavy metal concerns, providing a scalable solution for industrial EMR valorization. Further studies should validate the field performance and long-term ecological impacts to facilitate practical implementation.
电解锰渣(EMR)是锰生产过程中产生的酸性副产品,带来了环境污染和资源浪费这两大挑战。本研究通过对添加了甘蔗渣、糖蜜和活性污泥的电解锰渣进行好氧发酵,研制出了一种硅锰有机复合肥(SMOCF)。物理化学分析表明,电解锰渣的成分以硅(活性硅含量7.1%)、钙、硫和微量元素为主。堆肥过程中的关键参数——包括水溶性锰(1.48%)、有机质(8.05%)、pH值(7.4)、湿度(20.28%)和发芽指数(GI = 87.78%)——均符合有机肥标准,其中发芽指数超过了植物毒性阈值(80%)。最终的硅锰有机复合肥表现出良好的农艺特性:pH值呈中性、质地似土且含有必需的大量营养元素(钾1.36%、氮1.11%、磷0.48%)。硅锰有机复合肥中的重金属(砷、镉、铬、铅)主要以稳定的残留形态存在,其总浓度符合中国有机肥法规(GB/T 32951-2016)。生态风险评估证实其迁移潜力极小(风险评估代码<5%),确保了环境安全。这项工作展示了一种循环经济策略,即将有害的电解锰渣重新利用制成农业可用的肥料,实现了污染减排和资源回收同步进行。优化后的硅锰有机复合肥符合有机肥质量标准,同时解决了重金属问题,为工业电解锰渣的增值利用提供了一种可扩展的解决方案。进一步的研究应验证其田间表现和长期生态影响,以促进实际应用。