Chen Jiahang, Huang Chunrong, Chen Chaoyi, Li Junqi, Lan Yuanpei
School of Materials and Metallurgy, Guizhou University, Guiyang 550025, China.
Guizhou Province Dual Carbon and New Energy Technology Innovation and Development Research Institute, Guiyang 550025, China.
Langmuir. 2025 Jul 1;41(25):15946-15962. doi: 10.1021/acs.langmuir.5c01025. Epub 2025 Jun 16.
A novel silicate-based adsorbent (M-EMR) was synthesized via a hydrothermal process using electrolytic manganese residue (EMR) and calcium carbide slag (CS) in a NaOH medium. The adsorption behavior of M-EMR for Cu(II) ions from aqueous solution was systematically investigated under varying conditions. The adsorption kinetics followed a pseudo-second-order model with a high correlation coefficient ( = 0.9999), suggesting chemisorption as the rate-limiting mechanism. Equilibrium data were best fitted by the Langmuir isotherm ( > 0.999), with maximum adsorption capacities of 174.22, 185.19, and 232.56 mg/g at 288.15, 298.15, and 308.15 K, respectively. Thermodynamic analysis revealed a spontaneous and endothermic process, characterized by negative Δ° values and positive Δ° (41.25 kJ/mol) and Δ° (203.88 J/mol·K). Competitive adsorption studies showed that Pb(II) significantly interfered with Cu(II) uptake, while Co(II) and Ni(II) exhibited negligible effects. M-EMR demonstrated high selectivity for Cu(II) and strong resistance to interference from coexisting cations (K, Ca, Na, Mg). Mechanistic analysis confirmed that ion exchange, surface precipitation, and complexation were the primary removal pathways, further supported by X-ray diffraction (XRD), Fourier-transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS) results. Cu(II) could be efficiently desorbed using 30 mmol/L EDTA, achieving a recovery efficiency of 96.62%. This study provides a cost-effective and environmentally sustainable approach for the valorization of industrial waste and the treatment of Cu(II)-contaminated wastewater.
通过水热法,在NaOH介质中使用电解锰渣(EMR)和电石渣(CS)合成了一种新型的基于硅酸盐的吸附剂(M-EMR)。系统研究了M-EMR在不同条件下对水溶液中Cu(II)离子的吸附行为。吸附动力学遵循伪二级模型,相关系数较高( = 0.9999),表明化学吸附是限速机制。平衡数据最适合Langmuir等温线( > 0.999),在288.15、298.15和308.15 K时的最大吸附容量分别为174.22、185.19和232.56 mg/g。热力学分析表明这是一个自发的吸热过程,其特征是Δ°值为负,Δ°(41.25 kJ/mol)和Δ°(203.88 J/mol·K)为正。竞争吸附研究表明,Pb(II)对Cu(II)的吸附有显著干扰,而Co(II)和Ni(II)的影响可忽略不计。M-EMR对Cu(II)表现出高选择性,对共存阳离子(K、Ca、Na、Mg)的干扰具有很强的抗性。机理分析证实,离子交换、表面沉淀和络合是主要的去除途径,X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)结果进一步证明了这一点。使用30 mmol/L的EDTA可以有效地解吸Cu(II),回收效率达到96.62%。本研究为工业废物的增值利用和Cu(II)污染废水的处理提供了一种经济高效且环境可持续的方法。