Wang Xiangjian, He Zhanwen, Gao Jianjun, Guo Yibo, Zhang Haijun, Wang Mingchao
Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin 300300, China.
School of Safety Science and Engineering, Civil Aviation University of China, Tianjin 300300, China.
Materials (Basel). 2025 Jun 29;18(13):3082. doi: 10.3390/ma18133082.
When lithium-ion batteries experience thermal runaway, a large amount of heat rapidly accumulates inside, causing the internal pressure to rise sharply. Once the pressure exceeds the battery's safety valve design capacity, the valve activates and releases flammable gas. If ignited in a high-temperature environment, the escaping gas can cause a jet fire containing high-temperature substances. Effectively controlling the internal temperature of the jet fire, especially rapidly cooling the core area of the flame during the jet process, is important to prevent the spread of lithium-ion battery fires. Therefore, this work proposes a strategy of a synergistic effect using microcapsule fire extinguishing agents and fine water mist to achieve an external barrier and an internal attack. The microcapsule fire extinguishing agents are prepared by using melamine-urea-formaldehyde resin as the shell and 1,1,1,2,2,3,3,4,4-nonafluoro-4-methoxybutane (CHFO) and 1,1,2,2,3,3,4-heptafluorocyclopentane (CHF) as the composite core. During the process of lithium-ion battery thermal runaway, the microcapsule fire extinguishing agents can enter the inner area of the jet fire under the protection of the fine water mist. The microcapsule shell ruptures at 100 °C, releasing the highly effective composite fire suppressant core inside the jet fire. The fine water mist significantly blocks the transfer of thermal radiation, inhibiting the spread of the fire. Compared to the suppression with fine water mist only, the time required to reduce the battery temperature from the peak value to a low temperature is reduced by 66 s and the peak temperature of the high-temperature substances above the battery is reduced by 228.2 °C. The propagation of the thermal runaway is suppressed, and no thermal runaway of other batteries around the faulty unit will occur. This synergistic suppression strategy of fine water mist and microcapsule fire extinguishing agent (FWM@M) effectively reduces the adverse effects of jet fires on the propagation of thermal runaway (TR) of lithium-ion batteries, providing a new solution for efficiently extinguishing lithium-ion battery fires.
当锂离子电池发生热失控时,大量热量会在内部迅速积聚,导致内部压力急剧上升。一旦压力超过电池安全阀的设计容量,阀门就会启动并释放可燃气体。如果在高温环境中被点燃,逸出的气体会引发包含高温物质的喷射火。有效控制喷射火的内部温度,尤其是在喷射过程中迅速冷却火焰的核心区域,对于防止锂离子电池火灾的蔓延至关重要。因此,这项工作提出了一种利用微胶囊灭火剂和细水雾协同作用的策略,以实现外部阻隔和内部攻击。微胶囊灭火剂是以三聚氰胺 - 脲 - 甲醛树脂为壳,1,1,1,2,2,3,3,4,4 - 九氟 - 4 - 甲氧基丁烷(CHFO)和1,1,2,2,3,3,4 - 七氟环戊烷(CHF)为复合芯制备而成。在锂离子电池热失控过程中,微胶囊灭火剂能在细水雾的保护下进入喷射火的内部区域。微胶囊壳在100℃时破裂,在喷射火内部释放出高效复合灭火核心成分。细水雾显著阻隔热辐射的传递,抑制火灾蔓延。与仅使用细水雾进行灭火相比,将电池温度从峰值降至低温所需时间减少了66秒,电池上方高温物质的峰值温度降低了228.2℃。热失控的传播得到抑制,故障单元周围的其他电池不会发生热失控。这种细水雾与微胶囊灭火剂的协同抑制策略(FWM@M)有效降低了喷射火对锂离子电池热失控(TR)传播的不利影响,为高效扑灭锂离子电池火灾提供了一种新的解决方案。