Suppr超能文献

玻璃纤维增强聚合物汽车前端模块的工艺-结构协同优化

Process-Structure Co-Optimization of Glass Fiber-Reinforced Polymer Automotive Front-End Module.

作者信息

Chen Ziming, Guo Pengcheng, Tan Longjian, Ye Tuo, Li Luoxing

机构信息

College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China.

Intelligent Manufacturing and Mechanical Engineering, Hunan Institute of Technology, Hengyang 421002, China.

出版信息

Materials (Basel). 2025 Jul 1;18(13):3121. doi: 10.3390/ma18133121.

Abstract

For automotive GFRP structural components, beyond structural design, the warpage, residual stress/strain, and fiber orientation inevitably induced during the injection molding process significantly compromise their service performance. These factors also diminish the reliability of performance assessments. Thus, it is imperative to develop a process-structure co-optimization approach for GFRP components. In this paper, the performance of a front-end module is evaluated through topological structure design, injection molding process optimization, and simulation with mapped injection molding history, followed by experimental validation and analysis. Under ±1000 N loading, the initial design shows excessive displacement at the latch mounting points (2.254 mm vs. <2.0 mm limit), which is reduced to 1.609 mm after topology optimization. By employing a sequential valve control system, the controls of the melt line and fiber orientation are is superior to thatose of conventional gating systems. The optimal process parameter combination is determined through orthogonal experiments, reducing the warpage to 1.498 mm with a 41.5% reduction compared to the average warpage of the orthogonal tests. The simulation results incorporating injection molding data mapping (fiber orientation, residual stress-strain) show closer agreement with experimental measurements. When the measured displacement exceeded 0.65 mm, the average relative error Er, range R, and variance s2 between the experimental results and mapped simulations were 11.78%, 14%, and 0.002462, respectively, validating the engineering applicability of this method. The methodology and workflow can provide methodological support for the design and performance assessment of GFRP automotive body structures, which enhances structural rigidity, improves control over injection molding process defects, and elevates the reliability of performance evaluation.

摘要

对于汽车用玻璃纤维增强塑料(GFRP)结构部件,除了结构设计外,注射成型过程中不可避免地产生的翘曲、残余应力/应变和纤维取向会显著影响其使用性能。这些因素也降低了性能评估的可靠性。因此,开发一种针对GFRP部件的工艺-结构协同优化方法势在必行。本文通过拓扑结构设计、注射成型工艺优化以及带有映射注射成型历史的模拟来评估前端模块的性能,随后进行实验验证和分析。在±1000 N载荷下,初始设计在闩锁安装点处显示出过大位移(2.254 mm,而极限为<2.0 mm),拓扑优化后该位移减小至1.609 mm。通过采用顺序阀控制系统,熔体流动纹和纤维取向的控制优于传统浇口系统。通过正交实验确定了最佳工艺参数组合,使翘曲降低至1.498 mm,与正交试验的平均翘曲相比降低了41.5%。包含注射成型数据映射(纤维取向、残余应力-应变)的模拟结果与实验测量结果显示出更紧密的一致性。当测量位移超过0.65 mm时,实验结果与映射模拟之间的平均相对误差Er、极差R和方差s2分别为11.78%、14%和0.002462,验证了该方法的工程适用性。该方法和工作流程可为GFRP汽车车身结构的设计和性能评估提供方法支持,增强结构刚度,改善对注射成型工艺缺陷的控制,并提高性能评估的可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/594b/12250687/e3a16efd9260/materials-18-03121-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验