Suppr超能文献

基于机器学习决策树的钻孔材料对扭矩影响的综合实验分析

Comprehensive Experimental Analysis of the Effect of Drilled Material on Torque Using Machine Learning Decision Trees.

作者信息

Hnátik Jan, Fulemová Jaroslava, Sklenička Josef, Gombár Miroslav, Vagaská Alena, Sýkora Jindřich, Lukáš Adam

机构信息

Department of Machining Technology, Faculty of Mechanical Engineering, University of West Bohemia, Univerzitní 22, 301 00 Plzeň, Czech Republic.

出版信息

Materials (Basel). 2025 Jul 2;18(13):3145. doi: 10.3390/ma18133145.

Abstract

This article deals with drilling, the most common and simultaneously most important traditional machining operation, and which is significantly influenced by the properties of the machined material itself. To fully understand this process, both from a theoretical and practical perspective, it is essential to examine the influence of technological and tool-related factors on its various parameters. Based on the evaluation of experimentally obtained data using advanced statistical methods and machine learning decision trees, we present a detailed analysis of the effects of technological factors (, ) and tool-related factors (, , , ) on variations in torque () during drilling of two types of engineering steels: carbon steel (C45) and case-hardening steel (16MnCr5). The experimental verification was conducted using CTS20D cemented carbide tools coated with a Triple Cr SHM layer. The analysis revealed a significant influence of the material on torque variation, accounting for a share of 1.430%. The experimental verification confirmed the theoretical assumption that the nominal tool diameter () has a key effect (53.552%) on torque variation. The revolution feed () contributes 36.263%, while the tool's point angle () and helix angle () influence torque by 1.189% and 0.310%, respectively. No significant effect of cutting speed () on torque variation was observed. However, subsequent machine learning analysis revealed the complexity of interdependencies between the input factors and the resulting torque.

摘要

本文探讨钻孔这一最常见且同时也是最重要的传统加工操作,它会受到被加工材料自身特性的显著影响。为从理论和实践角度全面理解这一过程,研究工艺和刀具相关因素对其各项参数的影响至关重要。基于使用先进统计方法和机器学习决策树对实验获得的数据进行评估,我们详细分析了工艺因素(,)和刀具相关因素(,,,)对两种工程钢(碳钢(C45)和渗碳钢(16MnCr5))钻孔过程中扭矩()变化的影响。实验验证使用了涂有三重铬SHM涂层的CTS20D硬质合金刀具。分析表明材料对扭矩变化有显著影响,占比为1.430%。实验验证证实了理论假设,即标称刀具直径()对扭矩变化有关键影响(53.552%)。每转进给量()的贡献为36.263%,而刀具的顶角()和螺旋角()对扭矩的影响分别为1.189%和0.310%。未观察到切削速度()对扭矩变化有显著影响。然而,后续的机器学习分析揭示了输入因素与最终扭矩之间相互依存关系的复杂性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92de/12251476/b2878869a992/materials-18-03145-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验