Chan Pei-Ching, Ku Wei-Lun, Chuang Yung-Kun, Chou Yu-Chieh, Hsieh Chen-Che, Lin Yung-Kai, Santoso Shella Permatasari, Lin Shin-Ping
School of Food Safety, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan.
Ph.D. Program in Drug Discovery and Development Industry, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan.
Materials (Basel). 2025 Jul 3;18(13):3151. doi: 10.3390/ma18133151.
In this study, we explored the development and characterization of fungus-immobilized foamed bacterial cellulose (FBC) scaffolds using and . FBC, a porous biomaterial with high structural integrity and resistance to enzymatic degradation, served as a three-dimensional matrix for fungal cultivation. The results indicated effective fungal immobilization, with the 1% -immobilized FBC group (FBC/1A) achieving the highest production yield. The water content (97%) and swelling behavior (95.9%) analyses revealed that -immobilized FBC maintained high hydration levels and rehydration capacities, whereas immobilization led to slightly reduced water retention. Morphological assessments via SEM confirmed the presence of fungal-derived fibers integrated with native cellulose structures, suggesting successful immobilization. A thermogravimetric analysis demonstrated enhanced thermal stability in fungus-immobilized FBC, particularly in the group, while FTIR spectra suggested possible structural alterations induced by fungal activity. Collectively, these findings support the potential of fungal-immobilized FBC as a robust, biodegradable material with promising applications in biotechnology and sustainable material development.
在本研究中,我们使用[具体内容缺失]探索了固定真菌的泡沫状细菌纤维素(FBC)支架的开发与特性。FBC是一种具有高结构完整性和抗酶降解性的多孔生物材料,用作真菌培养的三维基质。结果表明真菌固定有效,1%固定真菌的FBC组(FBC/1A)产量最高。水分含量(97%)和溶胀行为(95.9%)分析表明,[具体内容缺失]固定的FBC保持高水合水平和再水合能力,而[具体内容缺失]固定导致保水能力略有降低。通过扫描电子显微镜(SEM)进行的形态学评估证实存在与天然纤维素结构整合的真菌衍生纤维,表明固定成功。热重分析表明固定真菌的FBC热稳定性增强,特别是在[具体内容缺失]组中,而傅里叶变换红外光谱(FTIR)表明真菌活性可能诱导结构改变。总体而言,这些发现支持固定真菌的FBC作为一种强大的可生物降解材料在生物技术和可持续材料开发中具有广阔应用前景的潜力。