文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多组学整合:通过与恶性细胞相关的基因预测肝细胞癌的进展并优化临床治疗

Multi-Omics Integration: Predicting Progression and Optimizing Clinical Treatment of Hepatocellular Carcinoma Through Malignant-Cell-Related Genes.

作者信息

Wang Qianwen, Cheng Lingli, Yan Honglin, Yuan Jingping

机构信息

Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, China.

出版信息

Int J Mol Sci. 2025 Jun 26;26(13):6135. doi: 10.3390/ijms26136135.


DOI:10.3390/ijms26136135
PMID:40649911
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12249523/
Abstract

Hepatocellular carcinoma (HCC) presents significant intertumoral heterogeneity, complicating prognosis and treatment. To address this, we performed an integrated single-cell RNA-sequencing analysis of HCC specimens using Seurat and identified malignant cells via Infercnv. Through a systematic evaluation of 101 machine learning algorithms used in combination, we developed tumor-cell-specific gene signatures (TCSGs) that demonstrated strong predictive performance, with area under the curve (AUC) values ranging from 0.72 to 0.74 in independent validation cohorts. Risk stratification based on these signatures revealed distinct therapeutic vulnerabilities: high-risk patients showed increased sensitivity to sorafenib, while low-risk patients exhibited enhanced responses to immunotherapy and transarterial chemoembolization (TACE). Pharmacogenomic analysis with Oncopredict identified four chemotherapeutic agents, including sapitinib and dinaciclib, with risk-dependent efficacy patterns. Furthermore, CRISPR/Cas9-dependency screening prioritized SRSF7 as essential for HCC cell survival, a finding confirmed by the identification of protein-level overexpression in tumors via immunohistochemistry. This multi-omics framework bridges single-cell characterization to clinical decision-making, offering a clinically actionable prognostic system that can be used to optimize therapeutic selection in HCC management.

摘要

肝细胞癌(HCC)存在显著的肿瘤间异质性,这使得预后和治疗变得复杂。为了解决这个问题,我们使用Seurat对HCC标本进行了综合单细胞RNA测序分析,并通过Infercnv鉴定出恶性细胞。通过对101种联合使用的机器学习算法进行系统评估,我们开发了肿瘤细胞特异性基因特征(TCSG),其在独立验证队列中显示出强大的预测性能,曲线下面积(AUC)值在0.72至0.74之间。基于这些特征的风险分层揭示了不同的治疗脆弱性:高危患者对索拉非尼的敏感性增加,而低危患者对免疫治疗和经动脉化疗栓塞(TACE)的反应增强。使用Oncopredict进行的药物基因组分析确定了四种化疗药物,包括沙匹替尼和地西他滨,其疗效模式与风险相关。此外,CRISPR/Cas9依赖性筛选将SRSF7确定为HCC细胞存活所必需,这一发现通过免疫组织化学在肿瘤中鉴定出蛋白质水平的过表达得到证实。这个多组学框架将单细胞特征与临床决策联系起来,提供了一个可用于优化HCC管理中治疗选择的临床可行的预后系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b584/12249523/1399ad1b07b6/ijms-26-06135-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b584/12249523/80bdd735a427/ijms-26-06135-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b584/12249523/58147723640a/ijms-26-06135-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b584/12249523/76c85b6208ec/ijms-26-06135-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b584/12249523/d797e3128629/ijms-26-06135-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b584/12249523/998fbe8d1760/ijms-26-06135-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b584/12249523/fea781c67c00/ijms-26-06135-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b584/12249523/565a8896d09f/ijms-26-06135-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b584/12249523/30f6fb03d4dd/ijms-26-06135-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b584/12249523/1399ad1b07b6/ijms-26-06135-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b584/12249523/80bdd735a427/ijms-26-06135-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b584/12249523/58147723640a/ijms-26-06135-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b584/12249523/76c85b6208ec/ijms-26-06135-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b584/12249523/d797e3128629/ijms-26-06135-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b584/12249523/998fbe8d1760/ijms-26-06135-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b584/12249523/fea781c67c00/ijms-26-06135-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b584/12249523/565a8896d09f/ijms-26-06135-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b584/12249523/30f6fb03d4dd/ijms-26-06135-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b584/12249523/1399ad1b07b6/ijms-26-06135-g009.jpg

相似文献

[1]
Multi-Omics Integration: Predicting Progression and Optimizing Clinical Treatment of Hepatocellular Carcinoma Through Malignant-Cell-Related Genes.

Int J Mol Sci. 2025-6-26

[2]
Multi-omics analysis identifies SNP-associated immune-related signatures by integrating Mendelian randomization and machine learning in hepatocellular carcinoma.

Sci Rep. 2025-7-4

[3]
Machine learning-assisted multi-dimensional transcriptomic analysis of cytoskeleton-related molecules and their relationship with prognosis in hepatocellular carcinoma.

Sci Rep. 2025-7-3

[4]
The impact of de novo lipogenesis on predicting survival and clinical therapy: an exploration based on a multigene prognostic model in hepatocellular carcinoma.

J Transl Med. 2025-6-18

[5]
Management of people with intermediate-stage hepatocellular carcinoma: an attempted network meta-analysis.

Cochrane Database Syst Rev. 2017-3-10

[6]
Exercise-related immune gene signature for hepatocellular carcinoma: machine learning and multi-omics analysis.

Front Immunol. 2025-6-20

[7]
Identification of matrix stiffness-related molecular subtypes in HCC via integrating multi-omics analysis and machine learning algorithms.

J Transl Med. 2025-7-1

[8]
Transarterial chemoembolization plus sorafenib for the management of unresectable hepatocellular carcinoma: a systematic review and meta-analysis.

BMC Gastroenterol. 2018-9-4

[9]
Multi-omics analysis reveals the role of ribosome biogenesis in malignant clear cell renal cell carcinoma and the development of a machine learning-based prognostic model.

Front Immunol. 2025-6-26

[10]
Identification of anoikis-related subtypes and a risk score prognosis model, the association with TME landscapes and therapeutic responses in hepatocellular carcinoma.

Front Immunol. 2025-6-17

本文引用的文献

[1]
SEC14L2 regulates the transport of cholesterol in non-small cell lung cancer through SCARB1.

Lipids Health Dis. 2024-12-18

[2]
HSP90AA1 is an unfavorable prognostic factor for hepatocellular carcinoma and contributes to tumorigenesis and chemotherapy resistance.

Transl Oncol. 2024-12

[3]
Mime: A flexible machine-learning framework to construct and visualize models for clinical characteristics prediction and feature selection.

Comput Struct Biotechnol J. 2024-6-29

[4]
Unveiling novel cell clusters and biomarkers in glioblastoma and its peritumoral microenvironment at the single-cell perspective.

J Transl Med. 2024-6-8

[5]
Serine/Arginine-Rich Splicing Factor 7 Knockdown Inhibits Aerobic Glycolysis and Growth in HepG2 Cells by Regulating PKM2 Expression.

Curr Issues Mol Biol. 2024-5-20

[6]
Alpha-fetoprotein: Past, present, and future.

Hepatol Commun. 2024-4-12

[7]
Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.

CA Cancer J Clin. 2024

[8]
Mitochondrial DNA copy number and cancer risks: A comprehensive Mendelian randomization analysis.

Int J Cancer. 2024-4-15

[9]
Insights on epithelial cells at the single-cell level in hepatocellular carcinoma prognosis and response to chemotherapy.

Front Pharmacol. 2023-11-17

[10]
SRSF7 is a promising prognostic biomarker in hepatocellular carcinoma and is associated with immune infiltration.

Genes Genomics. 2024-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索