Suppr超能文献

多组学分析通过整合孟德尔随机化和机器学习在肝细胞癌中识别与单核苷酸多态性相关的免疫相关特征。

Multi-omics analysis identifies SNP-associated immune-related signatures by integrating Mendelian randomization and machine learning in hepatocellular carcinoma.

作者信息

Kou Qingyan, Wu Zhichao, Zhao Wenbin, Liu Zhenyuan, Qiao Shengxian, Mu Qiang, Zhang Xu

机构信息

Department of General Surgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China.

出版信息

Sci Rep. 2025 Jul 4;15(1):23930. doi: 10.1038/s41598-025-09010-1.

Abstract

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death globally, characterized by high morbidity and poor prognosis. The complex molecular and immune landscape of HCC makes accurate patient stratification and personalized treatment essential. In this study, we utilized large-scale gene expression data from TCGA and GSE54236, alongside eQTL GWAS data, to identify key genes that influence HCC prognosis. Machine learning analysis was performed on the genes identified through Mendelian randomization (MR) and survival association analysis, using 101 algorithms to construct a robust prognostic model. A novel riskScore model was developed by integrating genetic, clinical, and immune cell infiltration data. The prognostic performance of model was validated through survival analysis, and its association with chemotherapy and immunotherapy sensitivity. The impact of key genes on the proliferation and invasion capabilities of HCC cells was assessed through Western blot (WB), EdU, and invasion assays. A total of 27 candidate genes associated with HCC survival were identified, with 16 genes categorized as high-risk. The riskScore model demonstrated excellent performance in stratifying patients into high-risk and low-risk groups, with C-index exceeding 0.7 for both TCGA and GSE54236 datasets. High-risk patients exhibited poorer prognosis and higher immune cell infiltration, particularly T cells and neutrophils. The model also predicted drug sensitivity, with high-risk patients showing greater sensitivity to chemotherapy agents like 5-Fluorouracil and Paclitaxel. Mutation analysis revealed that TP53 and MUC16 mutations were prevalent in high-risk groups, highlighting their role in HCC progression and therapeutic response. And the key gene SLC16A3 and STRBP can significantly promote the proliferation and invasion ability of HCC cells. Our riskScore model, integrating genetic and immune factors, provides a robust prognostic tool with potential clinical application in patient stratification and chemotherapy decision-making for HCC patients.

摘要

肝细胞癌(HCC)是全球癌症相关死亡的主要原因,其特点是发病率高且预后差。HCC复杂的分子和免疫格局使得准确的患者分层和个性化治疗至关重要。在本研究中,我们利用来自TCGA和GSE54236的大规模基因表达数据以及eQTL全基因组关联研究(GWAS)数据,以识别影响HCC预后的关键基因。对通过孟德尔随机化(MR)和生存关联分析确定的基因进行机器学习分析,使用101种算法构建一个强大的预后模型。通过整合遗传、临床和免疫细胞浸润数据,开发了一种新型风险评分(riskScore)模型。通过生存分析验证了该模型的预后性能及其与化疗和免疫治疗敏感性的关联。通过蛋白质免疫印迹法(WB)、EdU和侵袭实验评估关键基因对HCC细胞增殖和侵袭能力的影响。共鉴定出27个与HCC生存相关的候选基因,其中16个基因被归类为高风险基因。riskScore模型在将患者分为高风险和低风险组方面表现出色,TCGA和GSE54236数据集的C指数均超过0.7。高风险患者预后较差且免疫细胞浸润较高,尤其是T细胞和中性粒细胞。该模型还预测了药物敏感性,高风险患者对5-氟尿嘧啶和紫杉醇等化疗药物表现出更高的敏感性。突变分析显示,TP53和MUC16突变在高风险组中普遍存在,突出了它们在HCC进展和治疗反应中的作用。关键基因SLC16A3和STRBP可显著促进HCC细胞的增殖和侵袭能力。我们的riskScore模型整合了遗传和免疫因素,为HCC患者的分层和化疗决策提供了一种强大的具有潜在临床应用价值的预后工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2283/12227606/a805131e1ff7/41598_2025_9010_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验