文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

肝细胞癌的运动相关免疫基因特征:机器学习与多组学分析

Exercise-related immune gene signature for hepatocellular carcinoma: machine learning and multi-omics analysis.

作者信息

Pu Cheng, Pu Lei, Zhang Xiaoyan, He Qian, Zhou Jiacheng, Li Jianyue

机构信息

School of Martial Arts, Shanghai University of Sport, Shanghai, China.

The Key Laboratory of Adolescent Health Assessment and Exercise Intervention of the Ministry of Education, East China Normal University, Shanghai, China.

出版信息

Front Immunol. 2025 Jun 20;16:1606711. doi: 10.3389/fimmu.2025.1606711. eCollection 2025.


DOI:10.3389/fimmu.2025.1606711
PMID:40621461
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12226479/
Abstract

BACKGROUND: Exercise is known to regulate the immune system. However, its prognostic value in hepatocellular carcinoma (HCC) remains largely unknown. OBJECTIVE: This study aims to construct a machine learning-based prognostic signature using exercise-related immune genes (EIGs) to predict prognosis in HCC. METHODS: We obtained mRNA-seq and scRNA of HCC from GeneCards, GEO, TCGA and ICGC. EIG were obtained using WGCNA, differential gene expression analysis and CIBERSORT. Univariate COX analysis and 101 combinations of 10 machine learning algorithms were used to construct EIG prognostic signature (EIGPS), and survival analyses were performed. Furthermore, we conducted molecular subtyping, qRT-PCR, biological functions, immune infiltration, drug sensitivity, and single cell analyses on EIGPS. RESULTS: Using WGCNA, differential gene expression analysis, and CIBERSORT, 59 EIGs were identified, of which 54 were associated with prognosis. EIGPS constructed by 7 EIGs (UPF3B, G6PD, ENO1, FARSB, CYP2C9, DLGAP5, SLC2A1) had the highest average C-index value (0.742), showing good predictive performance independent of clinical features. qRT-PCR results showed that CYP2C9 was lowly expressed in HCC cells, while all other genes were highly expressed. 7 EIGs were divided into two subtypes, with C2 exhibiting better anti-tumor immunity. Immunological biological differences between high- and low-risk groups based on EIGPS involved immune responses. EIGPS was mainly expressed in macrophages. The high-risk group had higher macrophage abundance and immune escape ability, as well as greater sensitivity to Afatinib and Alpelisib. CONCLUSIONS: We identified key EIGs and constructed an EIGPS that can effectively predict the prognosis of HCC, which offers avenues for better personalized treatments.

摘要

背景:已知运动可调节免疫系统。然而,其在肝细胞癌(HCC)中的预后价值仍 largely 未知。 目的:本研究旨在构建基于运动相关免疫基因(EIG)的机器学习预后特征,以预测 HCC 的预后。 方法:我们从 GeneCards、GEO、TCGA 和 ICGC 获取了 HCC 的 mRNA-seq 和 scRNA。使用 WGCNA、差异基因表达分析和 CIBERSORT 获取 EIG。使用单变量 COX 分析和 10 种机器学习算法的 101 种组合构建 EIG 预后特征(EIGPS),并进行生存分析。此外,我们对 EIGPS 进行了分子亚型分析、qRT-PCR、生物学功能、免疫浸润、药物敏感性和单细胞分析。 结果:使用 WGCNA、差异基因表达分析和 CIBERSORT,鉴定出 59 个 EIG,其中 54 个与预后相关。由 7 个 EIG(UPF3B、G6PD、ENO1、FARSB、CYP2C9、DLGAP5、SLC2A1)构建的 EIGPS 具有最高的平均 C 指数值(0.742),显示出独立于临床特征的良好预测性能。qRT-PCR 结果显示,CYP2C9 在 HCC 细胞中低表达,而所有其他基因均高表达。7 个 EIG 分为两个亚型,C2 表现出更好的抗肿瘤免疫力。基于 EIGPS 的高风险和低风险组之间的免疫生物学差异涉及免疫反应。EIGPS 主要在巨噬细胞中表达。高风险组具有更高的巨噬细胞丰度和免疫逃逸能力,以及对阿法替尼和阿培利司的更高敏感性。 结论:我们鉴定出关键 EIG,并构建了可有效预测 HCC 预后的 EIGPS,为更好的个性化治疗提供了途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae86/12226479/763eafcabbf4/fimmu-16-1606711-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae86/12226479/cd27d01c552c/fimmu-16-1606711-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae86/12226479/540b817381a9/fimmu-16-1606711-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae86/12226479/2688c71c8719/fimmu-16-1606711-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae86/12226479/6a5b2933d3ec/fimmu-16-1606711-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae86/12226479/51b1e12b4f1c/fimmu-16-1606711-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae86/12226479/be29bc423c4f/fimmu-16-1606711-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae86/12226479/f60ee9be2bd0/fimmu-16-1606711-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae86/12226479/763eafcabbf4/fimmu-16-1606711-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae86/12226479/cd27d01c552c/fimmu-16-1606711-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae86/12226479/540b817381a9/fimmu-16-1606711-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae86/12226479/2688c71c8719/fimmu-16-1606711-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae86/12226479/6a5b2933d3ec/fimmu-16-1606711-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae86/12226479/51b1e12b4f1c/fimmu-16-1606711-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae86/12226479/be29bc423c4f/fimmu-16-1606711-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae86/12226479/f60ee9be2bd0/fimmu-16-1606711-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae86/12226479/763eafcabbf4/fimmu-16-1606711-g008.jpg

相似文献

[1]
Exercise-related immune gene signature for hepatocellular carcinoma: machine learning and multi-omics analysis.

Front Immunol. 2025-6-20

[2]
Multi-omics analysis identifies SNP-associated immune-related signatures by integrating Mendelian randomization and machine learning in hepatocellular carcinoma.

Sci Rep. 2025-7-4

[3]
Bioinformatics identification of key microRNA-correlated genes associated with hepatocellular carcinoma heterogeneity and prognosis.

BMC Gastroenterol. 2025-7-1

[4]
The impact of de novo lipogenesis on predicting survival and clinical therapy: an exploration based on a multigene prognostic model in hepatocellular carcinoma.

J Transl Med. 2025-6-18

[5]
Identification of anoikis-related subtypes and a risk score prognosis model, the association with TME landscapes and therapeutic responses in hepatocellular carcinoma.

Front Immunol. 2025-6-17

[6]
Deciphering Shared Gene Signatures and Immune Infiltration Characteristics Between Gestational Diabetes Mellitus and Preeclampsia by Integrated Bioinformatics Analysis and Machine Learning.

Reprod Sci. 2025-5-15

[7]
Machine learning-assisted multi-dimensional transcriptomic analysis of cytoskeleton-related molecules and their relationship with prognosis in hepatocellular carcinoma.

Sci Rep. 2025-7-3

[8]
Identification of matrix stiffness-related molecular subtypes in HCC via integrating multi-omics analysis and machine learning algorithms.

J Transl Med. 2025-7-1

[9]
Bioinformatics identification and validation of m6A/m1A/m5C/m7G/ac4 C-modified genes in oral squamous cell carcinoma.

BMC Cancer. 2025-7-1

[10]
Predictive effect and clinical diagnosis significance of exosome-related genes for nonalcoholic fatty liver disease-related hepatocellular carcinoma.

Sci Rep. 2025-7-2

本文引用的文献

[1]
Targeting HER2 in solid tumors: Unveiling the structure and novel epitopes.

Cancer Treat Rev. 2024-11

[2]
Transcriptional regulation of DLGAP5 by AR suppresses p53 signaling and inhibits CD8T cell infiltration in triple-negative breast cancer.

Transl Oncol. 2024-11

[3]
Unleashing anti-tumour immunity: dietary restriction and exercise interventions adjunct to chemotherapy for cancer patients.

Exerc Immunol Rev. 2024

[4]
Unveiling a cuproptosis-related risk model and the role of FARSB in hepatocellular carcinoma.

Heliyon. 2024-6-4

[5]
Unveiling the role of UPF3B in hepatocellular carcinoma: Potential therapeutic target.

Cancer Sci. 2024-8

[6]
A Novel Four-Gene Signature Based on Nonsense-Mediated RNA Decay for Predicting Prognosis in Hepatocellular Carcinoma: Bioinformatics Analysis and Functional Validation.

J Hepatocell Carcinoma. 2024-4-23

[7]
FARSB Facilitates Hepatocellular Carcinoma Progression by Activating the mTORC1 Signaling Pathway.

Int J Mol Sci. 2023-11-24

[8]
Macrophage metabolism, phenotype, function, and therapy in hepatocellular carcinoma (HCC).

J Transl Med. 2023-11-15

[9]
The effect of physical exercise on anticancer immunity.

Nat Rev Immunol. 2024-4

[10]
Afatinib combined with anti-PD1 enhances immunotherapy of hepatocellular carcinoma ERBB2/STAT3/PD-L1 signaling.

Front Oncol. 2023-5-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索