Sakiz Elif, Amanzadeh Jajin Elnaz, Cubeddu Liza, Gamsjaeger Roland, Avsar Timucin
School of Science, Western Sydney University, Sydney, NSW 2751, Australia.
Neuro-Oncology Laboratory, School of Medicine, Bahcesehir University, Istanbul 34734, Türkiye.
Int J Mol Sci. 2025 Jun 26;26(13):6171. doi: 10.3390/ijms26136171.
To advance our understanding of multiple sclerosis (MS), accurate identification of protein expression profiles as biomarkers for MS in cerebrospinal fluid (CSF) is critical. However, proteomic studies investigating MS have yielded inconsistent findings due to variability in sample sizes, diagnostic criteria, and data processing methods. We aimed to tackle these challenges by performing a thorough meta-analysis of proteomics datasets sourced from multiple independent studies. We conducted a thorough database search to gather all relevant studies using appropriate keywords. We screened articles using defined inclusion and exclusion criteria, and finally, six studies were included. We retrieved and combined data from five CSF datasets for discovery and two additional datasets for validation in 368 MS patients and controls. After data preprocessing, we calculated Z-scores for all datasets and for the integrated dataset. We used logistic regression models using training and validation datasets. We identified 11 differentially expressed proteins in the integrated dataset, revealing significant alterations in key pathways involved in immune response, neuroinflammation, and synaptic function. Notably, IGKC exhibited strong diagnostic potential, with an AUROC of 0.81. These findings highlight the value of re-analysing publicly available proteomics data to develop robust biomarker panels for MS diagnosis.
为了增进我们对多发性硬化症(MS)的理解,准确识别脑脊液(CSF)中作为MS生物标志物的蛋白质表达谱至关重要。然而,由于样本量、诊断标准和数据处理方法的差异,研究MS的蛋白质组学研究结果并不一致。我们旨在通过对来自多个独立研究的蛋白质组学数据集进行全面的荟萃分析来应对这些挑战。我们进行了全面的数据库搜索,使用适当的关键词收集所有相关研究。我们根据定义的纳入和排除标准筛选文章,最终纳入了六项研究。我们从五个CSF数据集中检索并合并数据用于发现,另外从两个数据集中检索并合并数据用于在368例MS患者和对照中进行验证。经过数据预处理后,我们计算了所有数据集以及整合数据集的Z分数。我们使用逻辑回归模型,利用训练和验证数据集。我们在整合数据集中鉴定出11种差异表达的蛋白质,揭示了免疫反应、神经炎症和突触功能等关键途径中的显著变化。值得注意地是,IGKC表现出强大的诊断潜力,曲线下面积(AUROC)为0.81。这些发现突出了重新分析公开可用的蛋白质组学数据以开发用于MS诊断的强大生物标志物组的价值。