文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

贝伐单抗对人血管内皮细胞免疫反应的促进作用:抗VEGF治疗免疫支持作用的见解

Promoting Immune Response of Human Vascular Endothelial Cells by Bevacizumab: Insights into the Immune Supportive Role of Anti-VEGF Therapy.

作者信息

Jia Haiyan, Nowocin Anna, Burns Chris, Wadhwa Meenu

机构信息

Biotherapeutics and Advanced Therapies, Science and Research Group, Medicines and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK.

出版信息

Int J Mol Sci. 2025 Jun 29;26(13):6280. doi: 10.3390/ijms26136280.


DOI:10.3390/ijms26136280
PMID:40650058
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12250103/
Abstract

Compelling clinical evidence strongly indicates that anti-angiogenesis therapeutics including Bevacizumab, a humanised anti-VEGF mAb, can alleviate the resistance to immunotherapy. We explored the direct modulation of Bevacizumab on endothelial cell (EC) immune response including surface expression of adhesion and MHC molecules and EC-elicited proliferation of immune cells under inflammatory conditions. Flow cytometry showed that addition of VEGF inhibited TNF-α stimulation of expression of ICAM-1 and VCAM-1 on HUVECs, whereas Bevacizumab enhanced this TNF-α-stimulated expression. The presence of MHC Class I on HUVECs was decreased by VEGF and increased by TNF-α, respectively. Bevacizumab reversed VEGF downregulation and promoted TNF-α upregulation of MHC class I expression, suggesting that anti-VEGF treatment can boost the endothelial immunological reaction, a prerequisite for immune cell trafficking. Functionally, real-time monitoring of the proliferation of human PBMCs co-cultured on HUVEC monolayers over 3 days showed opposing effects on the proliferation of PBMCs between VEGF and TNF-α. Consistently, Bevacizumab antagonised VEGF suppression and sensitized TNF-α activation of PBMC growth over the time course. In line with these findings, Bevacizumab increased the surface expression of CD69 on VEGF-treated T cells collected from PBMCs after 3-day co-cultures with HUVECs. Furthermore, the proliferation of CD3+, CD8+ and CD4+ T cells was promoted via Bevacizumab. Collectively, this study demonstrates that targeting VEGF can enhance the immune response of ECs required for T cell recruitment. Our findings provide insights to a deeper understanding of increased vascular inflammatory response conferred by anti-VEGF treatment in addition to inhibiting angiogenesis, which supports its favourable dual role in the positive immunological synergism with immunotherapy.

摘要

令人信服的临床证据有力地表明,包括贝伐单抗(一种人源化抗VEGF单克隆抗体)在内的抗血管生成疗法可减轻对免疫疗法的耐药性。我们探讨了贝伐单抗对内皮细胞(EC)免疫反应的直接调节作用,包括炎症条件下黏附分子和MHC分子的表面表达以及EC引发的免疫细胞增殖。流式细胞术显示,添加VEGF可抑制TNF-α刺激人脐静脉内皮细胞(HUVECs)上ICAM-1和VCAM-1的表达,而贝伐单抗可增强这种TNF-α刺激的表达。VEGF分别降低了HUVECs上MHC I类分子的表达,而TNF-α则增加了其表达。贝伐单抗逆转了VEGF的下调并促进了TNF-α对MHC I类分子表达的上调,表明抗VEGF治疗可增强内皮免疫反应,这是免疫细胞迁移的先决条件。在功能上,对在HUVEC单层上共培养3天的人外周血单核细胞(PBMCs)增殖的实时监测显示,VEGF和TNF-α对PBMCs增殖具有相反的作用。一致地,在整个时间过程中,贝伐单抗拮抗VEGF的抑制作用并使TNF-α对PBMC生长的激活敏感化。与这些发现一致,贝伐单抗增加了与HUVEC共培养3天后从PBMC中收集的VEGF处理的T细胞上CD69的表面表达。此外,贝伐单抗促进了CD3 +、CD8 +和CD4 + T细胞的增殖。总体而言,这项研究表明,靶向VEGF可以增强T细胞募集所需的内皮细胞免疫反应。我们的发现为更深入理解抗VEGF治疗除抑制血管生成外还赋予的血管炎症反应增强提供了见解,这支持了其在与免疫疗法的积极免疫协同作用中的有利双重作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d378/12250103/445e80191901/ijms-26-06280-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d378/12250103/e0a78f4939f8/ijms-26-06280-g001a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d378/12250103/ee5159b2ac24/ijms-26-06280-g002a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d378/12250103/702dd26fb2ed/ijms-26-06280-g003a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d378/12250103/fc1dbd4c4126/ijms-26-06280-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d378/12250103/23cdbba01b10/ijms-26-06280-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d378/12250103/445e80191901/ijms-26-06280-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d378/12250103/e0a78f4939f8/ijms-26-06280-g001a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d378/12250103/ee5159b2ac24/ijms-26-06280-g002a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d378/12250103/702dd26fb2ed/ijms-26-06280-g003a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d378/12250103/fc1dbd4c4126/ijms-26-06280-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d378/12250103/23cdbba01b10/ijms-26-06280-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d378/12250103/445e80191901/ijms-26-06280-g006.jpg

相似文献

[1]
Promoting Immune Response of Human Vascular Endothelial Cells by Bevacizumab: Insights into the Immune Supportive Role of Anti-VEGF Therapy.

Int J Mol Sci. 2025-6-29

[2]
Anti-vascular endothelial growth factor for diabetic macular oedema: a network meta-analysis.

Cochrane Database Syst Rev. 2017-6-22

[3]
Anti-vascular endothelial growth factor for choroidal neovascularisation in people with pathological myopia.

Cochrane Database Syst Rev. 2016-12-15

[4]
Anti-vascular endothelial growth factor for control of wound healing in glaucoma surgery.

Cochrane Database Syst Rev. 2016-1-15

[5]
Anti-vascular endothelial growth factor biosimilars for neovascular age-related macular degeneration.

Cochrane Database Syst Rev. 2024-6-3

[6]
Anti-vascular endothelial growth factor for prevention of postoperative vitreous cavity haemorrhage after vitrectomy for proliferative diabetic retinopathy.

Cochrane Database Syst Rev. 2015-8-7

[7]
Anti-vascular endothelial growth factor combined with intravitreal steroids for diabetic macular oedema.

Cochrane Database Syst Rev. 2018-4-18

[8]
Anti-vascular endothelial growth factor (VEGF) drugs for treatment of retinopathy of prematurity.

Cochrane Database Syst Rev. 2018-1-8

[9]
Anti-vascular endothelial growth factor for macular oedema secondary to branch retinal vein occlusion.

Cochrane Database Syst Rev. 2013-1-31

[10]
Anti-vascular endothelial growth factor for diabetic macular oedema: a network meta-analysis.

Cochrane Database Syst Rev. 2023-6-27

本文引用的文献

[1]
Human iPSC-Derived Endothelial Cells Exhibit Reduced Immunogenicity in Comparison With Human Primary Endothelial Cells.

Stem Cells Int. 2024-12-9

[2]
Beyond Cancer Cells: How the Tumor Microenvironment Drives Cancer Progression.

Cells. 2024-10-9

[3]
Potency Assay Variability Estimation in Practice.

Pharm Stat. 2025

[4]
Endothelial cells in tumor microenvironment: insights and perspectives.

Front Immunol. 2024

[5]
Localization, tissue biology and T cell state - implications for cancer immunotherapy.

Nat Rev Immunol. 2023-12

[6]
Immunosuppressive effects of vascular endothelial growth factor.

Oncol Lett. 2022-9-1

[7]
T cell interaction with activated endothelial cells primes for tissue-residency.

Front Immunol. 2022

[8]
Immune Checkpoint Inhibitors in Cancer Therapy.

Curr Oncol. 2022-4-24

[9]
Direct and indirect regulation of the tumor immune microenvironment by VEGF.

J Leukoc Biol. 2022-6

[10]
Immunomodulation by endothelial cells - partnering up with the immune system?

Nat Rev Immunol. 2022-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索