Al-Samydai Ali, Al-Mamoori Farah, Mayyas Amal, Oraibi Amjad Ibrahim, Al-Hussaniy Hany Akeel, Almukram Ali, Shakeel Faiyaz
Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan.
Department of Pharmaceutical Sciences, Faculty of Pharmacy, Zarqa University, Zarqa, Jordan.
Mol Divers. 2025 Jul 12. doi: 10.1007/s11030-025-11285-5.
Sirtuin-6 (SIRT6) is a NAD+-dependent deacetylase that maintains genome stability, metabolic regulation, and cellular stress responses, making it an attractive target for therapeutic intervention in metabolic and age-related diseases. Despite its biological importance, the identification of potent SIRT6 modulators remains limited. In this study, we applied an integrative computational approach combining cheminformatics, network pharmacology, molecular docking, and molecular dynamics simulations to explore new inhibitory candidates targeting SIRT6. A curated dataset of 78 CHEMBL compounds was used to develop robust multi-fingerprint QSAR models using Random Forest algorithms, validated through Y-randomization, external testing, and applicability domain analysis. Network pharmacology analysis revealed functional associations between SIRT6 and key regulatory proteins such as NAMPT, CD38, and HIF1A, highlighting its involvement in NAD⁺ biosynthesis and cellular stress pathways. Molecular docking identified CHEMBL50 (Quercetin) and CHEMBL4217987 as top candidates with favorable interactions at the SIRT6 catalytic site. These complexes were further evaluated through 200 ns MD simulations. Binding stability was confirmed using MM-GBSA free energy calculations, dynamic cross-correlation matrix (DCCM), and principal component analysis (PCA), demonstrating energetically favorable and stable protein-ligand interactions. Overall, this study offers a predictive and mechanistic framework for SIRT6 inhibitor discovery and provides lead scaffolds for further optimization and experimental validation.
沉默调节蛋白6(SIRT6)是一种依赖烟酰胺腺嘌呤二核苷酸(NAD⁺)的脱乙酰酶,可维持基因组稳定性、代谢调节和细胞应激反应,使其成为代谢和年龄相关疾病治疗干预的一个有吸引力的靶点。尽管其具有生物学重要性,但强效SIRT6调节剂的鉴定仍然有限。在本研究中,我们应用了一种整合计算方法,结合化学信息学、网络药理学、分子对接和分子动力学模拟,以探索靶向SIRT6的新的抑制性候选物。使用一个由78种CHEMBL化合物组成的精选数据集,通过随机森林算法开发强大的多指纹定量构效关系(QSAR)模型,并通过Y随机化、外部测试和适用域分析进行验证。网络药理学分析揭示了SIRT6与关键调节蛋白如Nampt、CD38和HIF1A之间的功能关联,突出了其在NAD⁺生物合成和细胞应激途径中的作用。分子对接确定CHEMBL50(槲皮素)和CHEMBL4217987为在SIRT6催化位点具有良好相互作用的顶级候选物。通过200纳秒的分子动力学模拟对这些复合物进行了进一步评估。使用MM-GBSA自由能计算、动态交叉相关矩阵(DCCM)和主成分分析(PCA)确认了结合稳定性,证明了蛋白质-配体相互作用在能量上是有利且稳定的。总体而言,本研究为SIRT6抑制剂的发现提供了一个预测性和机制性框架,并为进一步优化和实验验证提供了先导支架。