Suppr超能文献

基于生成对抗网络(GAN)模型,利用配体电子密度和三维结合口袋设计强效严重急性呼吸综合征冠状病毒2(SARS-CoV-2)M蛋白抑制剂:分子对接、动力学模拟和MM-GBSA分析的见解

Generative adversarial network (GAN) model-based design of potent SARS-CoV-2 M inhibitors using the electron density of ligands and 3D binding pockets: insights from molecular docking, dynamics simulation, and MM-GBSA analysis.

作者信息

Chakraborty Annesha, Krishnan Vignesh, Thamotharan Subbiah

机构信息

Biomolecular Crystallography Laboratory and DBT-Bioinformatics Center, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, India.

出版信息

Mol Divers. 2024 Nov 30. doi: 10.1007/s11030-024-11047-9.

Abstract

Deep learning-based generative adversarial network (GAN) frameworks have recently been developed to expedite the drug discovery process. These models generate novel molecules from scratch and validate them through molecular docking simulation to identify the most promising candidates for a given drug target. In this study, the SARS-CoV-2 main protease (M) was selected as the drug target. Two distinct GAN algorithms were employed to generate novel small molecules. One approach utilized experimental electron density (ED-based) data of ligands for training to generate drug-like molecules, while the second approach leveraged the target binding pocket to capture spatial and bonding relationship between atoms within the binding pockets. The ED-based approach generated approximately 26,000 molecules, whereas the binding pocket-based method produced around 100 molecules. These generated molecules were subsequently ranked based on molecular docking results using the glide XP score (both flexible and rigid docking) and AutoDock Vina. To identify the most potent GAN-derived molecules, molecular docking was also performed on co-crystallized inhibitor molecules of M. The six most promising molecules from these GAN approaches were further evaluated for stability, interactions, and MM-GBSA binding free energy through molecular dynamics simulations. This analysis led to the identification of four potent M inhibitor molecules, all featuring a 2-benzyl-6-bromophenol scaffold. The binding free energies of these compounds were compared with those of other M inhibitors, revealing that our compounds demonstrated better affinity for M than some broad-spectrum protease inhibitors. The dynamic cross-correlation matrix plot indicated strongly correlated and anti-correlated regions, potentially linked to ligand binding.

摘要

基于深度学习的生成对抗网络(GAN)框架最近已被开发出来,以加快药物发现过程。这些模型从头开始生成新的分子,并通过分子对接模拟对其进行验证,以识别给定药物靶点最有前景的候选分子。在本研究中,选择严重急性呼吸综合征冠状病毒2(SARS-CoV-2)主要蛋白酶(M)作为药物靶点。采用两种不同的GAN算法来生成新的小分子。一种方法利用配体的实验电子密度(基于ED)数据进行训练,以生成类药物分子,而第二种方法利用靶点结合口袋来捕捉结合口袋内原子之间的空间和键合关系。基于ED的方法生成了约26000个分子,而基于结合口袋的方法产生了约100个分子。随后,使用Glide XP评分(灵活和刚性对接)和AutoDock Vina,根据分子对接结果对这些生成的分子进行排名。为了识别最有效的GAN衍生分子,还对M的共结晶抑制剂分子进行了分子对接。通过分子动力学模拟,对这些GAN方法中最有前景的六个分子的稳定性、相互作用和MM-GBSA结合自由能进行了进一步评估。该分析导致鉴定出四种有效的M抑制剂分子,它们均具有2-苄基-6-溴苯酚支架。将这些化合物的结合自由能与其他M抑制剂的结合自由能进行比较,结果表明我们的化合物对M的亲和力比一些广谱蛋白酶抑制剂更好。动态交叉相关矩阵图显示了强相关和反相关区域,可能与配体结合有关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验