Suppr超能文献

用于囊泡胞吐作用自动检测与分析的高度适应性深度学习平台。

Highly adaptable deep-learning platform for automated detection and analysis of vesicle exocytosis.

作者信息

Chouaib Abed Alrahman, Chang Hsin-Fang, Khamis Omnia M, Alawar Nadia, Echeverry Santiago, Demeersseman Lucie, Elizarova Sofia, Daniel James A, Tian Qinghai, Lipp Peter, Fornasiero Eugenio F, Valitutti Salvatore, Barg Sebastian, Pape Constantin, Shaib Ali H, Becherer Ute

机构信息

Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421, Homburg, Germany.

Medical Cell Biology, Uppsala University, 75123, Uppsala, Sweden.

出版信息

Nat Commun. 2025 Jul 12;16(1):6450. doi: 10.1038/s41467-025-61579-3.

Abstract

Activity recognition in live-cell imaging is labor-intensive and requires significant human effort. Existing automated analysis tools are largely limited in versatility. We present the Intelligent Vesicle Exocytosis Analysis (IVEA) platform, an ImageJ plugin for automated, reliable analysis of fluorescence-labeled vesicle fusion events and other burst-like activity. IVEA includes three specialized modules for detecting: (1) synaptic transmission in neurons, (2) single-vesicle exocytosis in any cell type, and (3) nano-sensor-detected exocytosis. Each module uses distinct techniques, including deep learning, allowing the detection of rare events often missed by humans at a speed estimated to be approximately 60 times faster than manual analysis. IVEA's versatility can be expanded by refining or training new models via an integrated interface. With its impressive speed and remarkable accuracy, IVEA represents a seminal advancement in exocytosis image analysis and other burst-like fluorescence fluctuations applicable to a wide range of microscope types and fluorescent dyes.

摘要

活细胞成像中的活动识别工作强度大,需要大量人力。现有的自动化分析工具在通用性方面大多受到限制。我们推出了智能囊泡胞吐分析(IVEA)平台,这是一个用于自动、可靠地分析荧光标记的囊泡融合事件和其他突发类活动的ImageJ插件。IVEA包括三个用于检测的专门模块:(1)神经元中的突触传递,(2)任何细胞类型中的单囊泡胞吐,以及(3)纳米传感器检测到的胞吐。每个模块都使用不同的技术,包括深度学习,能够以比人工分析快约60倍的速度检测出人类经常错过的罕见事件。通过集成界面优化或训练新模型,可以扩展IVEA的通用性。凭借其令人印象深刻的速度和卓越的准确性,IVEA代表了胞吐图像分析以及适用于广泛显微镜类型和荧光染料的其他突发类荧光波动分析的一项重大进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验