Hinderling Lucien, Hadorn Remo, Kwasny Moritz, Frei Joël, Grädel Benjamin, Psalmon Sacha, Blum Yannick, Berthoz Rémi, Landolt Alex E, Towbin Benjamin D, Riveline Daniel, Pertz Olivier
Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland.
Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland.
Lab Chip. 2025 Jul 14. doi: 10.1039/d5lc00181a.
The application of traditional microfabrication techniques to biological research is hindered by their reliance on clean rooms, expensive or toxic materials, and slow iteration cycles. We present an accessible microfabrication workflow that addresses these challenges by integrating consumer 3D printing techniques and repurposing standard fluorescence microscopes equipped with DMDs for maskless photolithography. Our method achieves micrometer-scale precision across centimeter-sized areas without clean room infrastructure, using affordable and readily available consumables. We demonstrate the versatility of this approach through four biological applications: inducing cytoskeletal protrusions 1 μm-resolution surface topographies; micropatterning to standardize cell and tissue morphology; fabricating multilayer microfluidic devices for confined cell migration studies; imprinting agar chambers for long-time tracking of . Our protocol drastically reduces material costs compared to conventional methods and enables design-to-device turnaround within a day. By leveraging open-source microscope control software and existing lab equipment, our workflow lowers the entry barrier to microfabrication, enabling labs to prototype custom solutions for diverse experimental needs while maintaining compatibility with soft lithography and downstream biological assays.
传统微纳加工技术在生物研究中的应用受到限制,因为它们依赖洁净室、昂贵或有毒的材料以及缓慢的迭代周期。我们提出了一种易于使用的微纳加工工作流程,通过整合消费级3D打印技术,并将配备数字微镜器件(DMD)的标准荧光显微镜重新用于无掩模光刻,来应对这些挑战。我们的方法在无需洁净室基础设施的情况下,利用经济实惠且易于获得的耗材,在厘米级区域内实现了微米级精度。我们通过四个生物学应用展示了这种方法的多功能性:诱导细胞骨架突起、制作1μm分辨率的表面形貌;进行微图案化以标准化细胞和组织形态;制造用于受限细胞迁移研究的多层微流控装置;印制琼脂腔室用于长时间追踪。与传统方法相比,我们的方案大幅降低了材料成本,并能在一天内实现从设计到器件的周转。通过利用开源显微镜控制软件和现有的实验室设备,我们的工作流程降低了微纳加工的入门门槛,使实验室能够为各种实验需求制作定制解决方案的原型,同时保持与软光刻和下游生物学检测的兼容性。