Suppr超能文献

数据驱动的反馈增强了脑肿瘤中的超声纳米诊疗技术。

Data-driven feedback augments ultrasound nanotheranostics in brain tumors.

作者信息

Lee Hohyun, Menezes Victor, Zeng Shiqin, Kim Chulyong, Baseman Cynthia M, Kim Jae Hyun, Padmanabhan Samhita, Premdas Pranav, Djeddar Naima, Bryksin Anton, Pandey Nikhil, Anastasiadis Pavlos, Kim Anthony J, MacDonald Tobey J, Bettegowda Chetan, Woodworth Graeme F, Herrmann Felix J, Arvanitis Costas

机构信息

Woodruf School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States.

School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States.

出版信息

bioRxiv. 2025 May 7:2025.05.01.651328. doi: 10.1101/2025.05.01.651328.

Abstract

The blood-brain barrier (BBB) renders the delivery of nanomedicine in the brain ineffective and the detection of circulating disease-related DNA from the brain unreliable. Here, we show that the acoustic emission content of focused ultrasound-controlled microbubble dynamics (MB-FUS) incorporates precursor signals that allow large-data models to predict sonication regimens for safe and effective BBB opening. Crucially, closed-loop MB-FUS controller augmented by machine learning (ML-CL) expands the treatment window (4-fold), as compared to conventional controllers, by persistently and proactively maximizing the BBB permeability while preventing tissue damage. By successfully scaling up from mice to rats and from healthy to diseased brains (glioma), ML-CL rendered the BBB permeable to large nanoparticles and markedly improved the release and detection of tumor DNA in plasma. Together, our findings reveal the potential of data-driven feedback to support the development of next-generation AI-powered ultrasound systems for safe, robust, and efficient nanotheranostic targeting of brain diseases.

摘要

血脑屏障(BBB)使得纳米药物在大脑中的递送效果不佳,并且从大脑中检测循环疾病相关DNA也不可靠。在此,我们表明聚焦超声控制微泡动力学(MB-FUS)的声发射内容包含前体信号,这些信号可使大数据模型预测用于安全有效打开血脑屏障的超声处理方案。至关重要的是,与传统控制器相比,通过机器学习增强的闭环MB-FUS控制器(ML-CL)通过持续主动地最大化血脑屏障通透性同时防止组织损伤,将治疗窗口扩大了4倍。通过成功从小鼠扩大到大鼠,以及从健康大脑扩大到患病大脑(胶质瘤),ML-CL使血脑屏障对大纳米颗粒具有通透性,并显著改善了血浆中肿瘤DNA的释放和检测。总之,我们的研究结果揭示了数据驱动反馈在支持下一代人工智能驱动的超声系统开发方面的潜力,该系统可用于安全、稳健且高效地对脑部疾病进行纳米诊疗靶向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9bb/12247749/1cbd9b8648af/nihpp-2025.05.01.651328v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验