Suppr超能文献

人类连接组计划的自动个体皮质分区

Automatic Individual Cortical Parcellation for the Human Connectome Project.

作者信息

Yang Chunhui, Coalson Timothy S, Farahibozorg Seyedeh-Rezvan, Bijsterbosch Janine D, Smith Stephen M, Van Essen David C, Glasser Matthew F

出版信息

bioRxiv. 2025 May 3:2025.04.29.651219. doi: 10.1101/2025.04.29.651219.

Abstract

The original Human Connectome Project multimodal cortical parcellation (HCP_MMP1.0) used MRI-derived local features and long-distance functional connectivity measures to define a multimodal parcellation at the group level, accompanied by an automated areal classifier, to create subject-specific mappings of the human cerebral cortex. These mappings, referred to as individual (cortex) parcellations, aim to capture individual variability in areal organization by learning from both structural and functional data. However, a strict supervised learning approach using the group parcellation as labels would have no incentive to learn individual differences that registration is unable to reconcile (e.g., atypical 55b topologies). Furthermore, there are many types of resting state network (RSN) feature maps, and it is unclear which type would most accurately or effectively classify areas, or even what should be the primary criteria for evaluating classification performance. Here, we introduce an A real R ecognition E nsemble with N ested A pproach (ARENA) classifier that learns from uncertain labels, using a novel application of weakly supervised learning to this type of problem. Additionally, in comparing multiple candidate RSN decompositions, temporal ICA and PROFUMO maps outperformed the original spatial ICA-based approach based on objective criteria. With these refinements, the ensemble classifier achieved a reliable individual variability score of 8380, an average areal detection rate of 97.8%, and test-retest reproducibility of 73.3%, outperforming a retrained version of the original Multi-layer Perceptron (MLP) model (whose reliable individual variability score was 3128, average areal detection rate was 97.2%, and test-retest reproducibility was 71.6% on the same dataset). Furthermore, the ARENA classifier demonstrated stronger generalization for all three measures when applied to task fMRI data that were not part of the training dataset. Using the refined classifier and leveraging all 1071 HCP-Young Adult subjects, we identified new types of atypical organization of language-related area 55b. Here we provide the fully data-driven HCP_MMP1.0_1071_MPM (Maximum Probability Map) group parcellation and a summary of area 55b organization in both hemispheres. Our automated individual parcellation pipeline powered by the novel ARENA classifier is now integrated into the HCP pipelines, offering a user-friendly tool for the neuroimaging community.

摘要

最初的人类连接组计划多模态皮质分区(HCP_MMP1.0)使用MRI衍生的局部特征和长距离功能连接测量来在群体水平定义多模态分区,并伴有自动区域分类器,以创建人类大脑皮质的个体特异性映射。这些映射,称为个体(皮质)分区,旨在通过从结构和功能数据中学习来捕捉区域组织中的个体变异性。然而,使用群体分区作为标签的严格监督学习方法不会激励学习配准无法协调的个体差异(例如,非典型的55b拓扑结构)。此外,静息态网络(RSN)特征图有多种类型,尚不清楚哪种类型能最准确或有效地对区域进行分类,甚至不清楚评估分类性能的主要标准应该是什么。在这里,我们引入了一种具有嵌套方法的真实识别集成(ARENA)分类器,它从不确定标签中学习,将弱监督学习新颖地应用于这类问题。此外,在比较多个候选RSN分解时,基于客观标准,时间独立成分分析(ICA)和PROFUMO图谱优于基于原始空间ICA的方法。通过这些改进,集成分类器实现了8380的可靠个体变异性得分、97.8%的平均区域检测率和73.3%的重测再现性,优于原始多层感知器(MLP)模型的重新训练版本(在同一数据集上,其可靠个体变异性得分是3128,平均区域检测率是97.2%,重测再现性是71.6%)。此外,当应用于不属于训练数据集的任务功能磁共振成像(fMRI)数据时,ARENA分类器在所有三项测量中都表现出更强的泛化能力。使用改进后的分类器并利用所有1071名HCP青年成人受试者,我们识别出了语言相关区域55b的新型非典型组织。在这里,我们提供了完全数据驱动的HCP_MMP1.0_1071_MPM(最大概率图谱)群体分区以及两个半球中55b区域组织的总结。我们由新颖的ARENA分类器驱动的自动个体分区管道现在已集成到HCP管道中,为神经成像社区提供了一个用户友好的工具。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验