Suppr超能文献

用于无生物制剂神经再生和血管整合的3D打印神经导向导管

3D Printed Nerve Guidance Conduit for Biologics-Free Nerve Regeneration and Vascular Integration.

作者信息

Schimelman Jacob, Berry David B, Johnson Susie, Shi Ruskin, Brown Sophie, Nguyen Quyen T, Chen Shaochen

机构信息

Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego; La Jolla, CA, 92093, USA.

Department of Orthopedic Surgery, University of California, San Diego, University of California San Diego; La Jolla, CA, 92093, USA.

出版信息

bioRxiv. 2025 May 7:2025.04.30.651603. doi: 10.1101/2025.04.30.651603.

Abstract

There is a clinical need for an effective nerve guidance conduit to treat peripheral nerve injuries. Many studies have explored different materials and active cues to guide neural regeneration, with some success. However, none have demonstrated a comparable or better functional recovery than the clinical standard autograft. Autografts are often insufficient for reconstruction of an injury to long nerves such as the sciatic or brachial plexus. Synthetic nerve guidance conduits (NGCs) have been investigated for these injuries to guide axonal regeneration and lead to functional recovery. We have designed a biologics-free hydrogel-based multi-channel conduit with defined microscale features to guide axonal outgrowth. To investigate extraneural vascular infiltration and its effects on functional recovery, we also designed a multi-microchannel conduit with defined regularly spaced micropores, orthogonal to the axon guidance channels. Using our custom-built Rapid Projection, Image-guided, Dynamic (RaPID) bioprinting system, we are able to fabricate each hydrogel conduit within minutes from a milliliter-volume prepolymer vat. With our state-of-the-art printing platform, we have achieved NGCs with a consistent channel wall width of 10 microns. We implanted the NGCs for 17 weeks in a murine sciatic nerve transection injury model. We assessed the functional recovery by dynamic gait analysis throughout the recovery period and by compound muscle action potential (CMAP) electrophysiology before NGC harvesting. Both the non-porous and micro-porous conduit groups led to functional nerve regeneration on par with the autograft group. Further, both conduit groups resulted in restoration of bulk motor function to pre-injury performance.

摘要

临床上需要一种有效的神经引导导管来治疗周围神经损伤。许多研究探索了不同的材料和活性线索来引导神经再生,并取得了一些成功。然而,没有一项研究表明其功能恢复能与临床标准自体移植相媲美或更优。自体移植通常不足以重建坐骨神经或臂丛神经等长神经的损伤。合成神经引导导管(NGC)已针对这些损伤进行了研究,以引导轴突再生并实现功能恢复。我们设计了一种无生物制剂的基于水凝胶的多通道导管,具有明确的微观特征以引导轴突生长。为了研究神经外血管浸润及其对功能恢复的影响,我们还设计了一种多微通道导管,其具有与轴突引导通道正交的、规则间隔的微孔。使用我们定制的快速投影、图像引导、动态(RaPID)生物打印系统,我们能够在几分钟内从毫升体积的预聚物槽中制造出每个水凝胶导管。借助我们最先进的打印平台,我们已实现通道壁宽度一致为10微米的NGC。我们将NGC植入小鼠坐骨神经横断损伤模型中17周。在整个恢复期通过动态步态分析以及在收获NGC之前通过复合肌肉动作电位(CMAP)电生理学评估功能恢复情况。无孔和微孔导管组均实现了与自体移植组相当的功能性神经再生。此外,两个导管组均使整体运动功能恢复到损伤前的表现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7b0/12247896/50873b3c4cf1/nihpp-2025.04.30.651603v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验