Fu Shuhua, Wilson Parker, Zhang Bo
Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
bioRxiv. 2025 May 4:2025.04.29.651292. doi: 10.1101/2025.04.29.651292.
Cells can transcribe different isoforms of a gene by using distinct Transcriptional Start Regions (TSRs), which are recognized by RNA-Polymerase II and regulated by cell-type-specific expressed transcription factors, eventually forming tissue and cell-type-specific expression during development. However, how the distinct TSRs are selectively activated in different tissues and cell types remains largely uncharacterized. To better explore the alternative usage of gene TSRs, we developed , a novel bioinformatic method specifically designed to detect the significant usage alteration of gene TSRs in different tissues, cell types, or diseases. can process either scRNA-seq or bulk-RNA-seq transcriptome data, define dominant TSRs, and compute the differential usage of gene TSRs between given conditions. To demonstrate the capacity of , we applied to analyze a 10X snRNA-seq dataset of healthy and diabetic human kidneys, a Smart-seq2 dataset of mouse B-cell differentiation, and bulk-RNA-seq data of pluripotency transition in human ESCs. In all three analyses, TSRdetectors discovered significant alterations in TSR usage, accompanied by the significant remodeling of the epigenetic landscape. Alteration of TSR usage can change the dominant transcript isoform and further affect the major protein products. Interestingly, a large proportion of these alterations of TSR usage in different cell types did not change the overall gene expression, revealing unique transcription regulations that are independent of expression level. In summary, is a user-friendly package to analyze the differential usage of gene TSRs by using both scRNA-seq and bulk-RNA-seq data, and can be used to explore the alternative transcription initiations of genes at the single cell-type level.
细胞可以通过使用不同的转录起始区域(TSR)来转录基因的不同异构体,这些区域被RNA聚合酶II识别,并受细胞类型特异性表达的转录因子调控,最终在发育过程中形成组织和细胞类型特异性表达。然而,不同的TSR如何在不同组织和细胞类型中被选择性激活在很大程度上仍未得到充分研究。为了更好地探索基因TSR的替代使用情况,我们开发了一种新的生物信息学方法,专门用于检测不同组织、细胞类型或疾病中基因TSR的显著使用变化。该方法可以处理单细胞RNA测序(scRNA-seq)或批量RNA测序(bulk-RNA-seq)转录组数据,定义优势TSR,并计算给定条件下基因TSR的差异使用情况。为了证明该方法的能力,我们将其应用于分析健康和糖尿病患者肾脏的10X单细胞核RNA测序数据集、小鼠B细胞分化的Smart-seq2数据集以及人类胚胎干细胞多能性转变的批量RNA测序数据。在所有这三项分析中,TSRdetectors发现了TSR使用情况的显著变化,同时伴随着表观遗传景观的显著重塑。TSR使用情况的改变可以改变优势转录本异构体,并进一步影响主要蛋白质产物。有趣的是,不同细胞类型中这些TSR使用情况的改变很大一部分并没有改变整体基因表达,揭示了独立于表达水平的独特转录调控。总之,TSRdetectors是一个用户友好的软件包,可通过使用scRNA-seq和bulk-RNA-seq数据来分析基因TSR的差异使用情况,并可用于在单细胞类型水平上探索基因的替代转录起始。