MIG-6/帕皮林与转化生长因子-β信号之间的相互作用促进细胞外基质重塑并调节神经元结构的维持。
Interplay between MIG-6/papilin and TGF-β signaling promotes extracellular matrix remodeling and modulates the maintenance of neuronal architecture.
作者信息
Nadour Malika, Valette R L Robert I, Frébault Noémie, Fontaine Valérie, Rivollet Lise, Bénard Claire Y
机构信息
Université du Québec à Montréal, Department of Biological Sciences, Montreal, QC, Canada.
Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC Research Center), Université du Québec à Montréal, Montreal, QC, Canada.
出版信息
bioRxiv. 2025 May 8:2025.05.08.652809. doi: 10.1101/2025.05.08.652809.
Neuronal architecture laid out during embryogenesis persists lifelong, ensuring normal nervous system function. However, the mechanisms underlying the long-term maintenance of neuronal organization remain largely unknown. We previously uncovered that the conserved extracellular matrix protein MIG-6/papilin impacts collagen IV remodeling and neuronal maintenance, such that disruption of MIG-6/papilin leads to a collagen IV fibrotic state and altered tissue biomechanics, thereby stabilizing neuronal architecture. Here, we combine incisive molecular genetics and quantitative imaging to determine how this -dependent fibrotic phenotype is modulated, by investigating the implication of the TGF-β pathway, which is well known to regulate fibrosis in mammals. Our findings highlight a mechanism whereby the interplay between MIG-6/papilin and the TGF-β pathway regulates ECM composition and neuronal maintenance, with MIG-6/papilin acting as a positive regulator of TGF-β signaling. This work provides key insights into the molecular basis of sustaining neuronal architecture and offers a foundation for understanding age-related neurodegenerative and fibrotic conditions.
胚胎发育过程中形成的神经元结构会终生保持,以确保神经系统正常运作。然而,神经元组织长期维持的潜在机制在很大程度上仍不为人知。我们之前发现,保守的细胞外基质蛋白MIG-6/纤连蛋白影响IV型胶原蛋白重塑和神经元维持,因此MIG-6/纤连蛋白的破坏会导致IV型胶原蛋白纤维化状态和组织生物力学改变,从而稳定神经元结构。在此,我们结合精准的分子遗传学和定量成像技术,通过研究在哺乳动物中众所周知的调节纤维化的TGF-β信号通路的作用,来确定这种依赖纤维化的表型是如何被调节的。我们的研究结果突出了一种机制,即MIG-6/纤连蛋白与TGF-β信号通路之间的相互作用调节细胞外基质组成和神经元维持,其中MIG-6/纤连蛋白作为TGF-β信号的正调节因子。这项工作为维持神经元结构的分子基础提供了关键见解,并为理解与年龄相关的神经退行性和纤维化疾病奠定了基础。