Fischer Clark, Chen Jianxin, Meah Arafat, Wang Jun
bioRxiv. 2025 May 4:2025.04.29.650640. doi: 10.1101/2025.04.29.650640.
Recent advances in spatial proteomics have enabled high-dimensional protein analysis within tissue samples, yet few methods accurately detect low-abundance functional proteins. Spatial MIST (Multiplex Tagging) is one such technique, capable of profiling over 100 protein markers spatially at single-cell resolution on tissue sections and cultured cells. However, despite the availability of various open-source tools for image registration and visualization, no dedicated software exists to align the images and analyze spatial MIST data effectively. To address this gap, we present MIST-Explorer, a comprehensive, user-friendly toolkit for the visualization and analysis of single-cell spatial MIST array data. Developed in Python with a PyQt6-based graphical interface, MIST-Explorer streamlines the spatial omics workflow-from image preprocessing and registration to cell segmentation and protein quantification. The software supports two workflows: one for preprocessed datasets and another for raw image inputs, ensuring broad compatibility across experimental designs. Key features include tile-based image registration using Astroalign and PyStackReg, deep learning-based segmentation with StarDist, multi-channel visualization with layer controls, and an interactive analysis module offering ROI selection along with histograms, heatmaps, and UMAP plots. MIST-Explorer generates spatially resolved expression tables readily compatible with downstream single-cell analysis pipelines. By integrating all major steps into a single platform, MIST-Explorer empowers researchers to derive biological insights from complex spatial omics datasets without requiring extensive computational expertise.
Freely available at https://github.com/MIST-Explorer/MIST-Explorer .
空间蛋白质组学的最新进展使得在组织样本中进行高维蛋白质分析成为可能,但很少有方法能够准确检测低丰度功能蛋白。空间MIST(多重标记)就是这样一种技术,它能够在组织切片和培养细胞上以单细胞分辨率对100多种蛋白质标记物进行空间分析。然而,尽管有各种用于图像配准和可视化的开源工具,但还没有专门的软件来有效地对齐图像和分析空间MIST数据。为了填补这一空白,我们推出了MIST-Explorer,这是一个用于可视化和分析单细胞空间MIST阵列数据的全面、用户友好的工具包。MIST-Explorer基于Python开发,具有基于PyQt6的图形界面,简化了空间组学工作流程——从图像预处理和配准到细胞分割和蛋白质定量。该软件支持两种工作流程:一种用于预处理数据集,另一种用于原始图像输入,确保了跨实验设计的广泛兼容性。关键特性包括使用Astroalign和PyStackReg进行基于平铺的图像配准、使用StarDist进行基于深度学习的分割、带有图层控件的多通道可视化,以及一个交互式分析模块,可提供感兴趣区域选择以及直方图、热图和UMAP图。MIST-Explorer生成易于与下游单细胞分析管道兼容的空间分辨表达表。通过将所有主要步骤集成到一个平台中,MIST-Explorer使研究人员无需广泛的计算专业知识就能从复杂的空间组学数据集中获得生物学见解。