Mora-Antoinette Macy, Garcia-Ortiz Andrea, Obaji Mariam, Saffari Alexander, Matthews Melia D, Wasi Murtaza, Lewis Karl J
Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
bioRxiv. 2025 May 3:2023.10.01.556129. doi: 10.1101/2023.10.01.556129.
Recent evidence suggests acetylcholine has a positive influence on bone mechanotransduction. Osteocytes express components for nicotinic acetylcholine receptors (nAChRs), which are known for mediating calcium signaling and may impact mechanosensitivity. Here, we use novel fluorescent imaging approaches to provide the first evidence of direct interaction between osteocytes and cholinergic nerve fibers in cortical bone . Moreover, we show that osteocytes are functional targets of cholinergic signaling for bone mechanoadaptation. We report sexually dimorphic patterns in bone structure and mechanobiology based on nAChR function. In females, osteocyte mechanosensitivity was decreased at small force magnitudes and tissue level deficits were recovered with anabolic loading. In males, osteocyte mechanosensitivity was increased in some groups and anabolic loading had very little effect on overall tissue architecture. This work establishes a new signaling paradigm wherein osteocytes interface with cholinergic nerves and bone mechanotransduction is regulated by osteocyte cholinergic signaling in a sexually dimorphic way.
近期证据表明,乙酰胆碱对骨机械转导具有积极影响。骨细胞表达烟碱型乙酰胆碱受体(nAChRs)的组成部分,这些受体以介导钙信号传导而闻名,可能会影响机械敏感性。在这里,我们使用新型荧光成像方法,首次证明了骨细胞与皮质骨中胆碱能神经纤维之间存在直接相互作用。此外,我们表明骨细胞是骨机械适应性胆碱能信号传导的功能靶点。我们报告了基于nAChR功能的骨结构和力学生物学中的性别差异模式。在女性中,在小力大小下骨细胞机械敏感性降低,通过合成代谢负荷可恢复组织水平的缺陷。在男性中,某些组的骨细胞机械敏感性增加,合成代谢负荷对整体组织结构影响很小。这项工作建立了一种新的信号传导范式,其中骨细胞与胆碱能神经相互作用,并且骨机械转导以性别差异的方式由骨细胞胆碱能信号传导调节。